

Chatscape: A Behavior-Enhanced Graphical Chat
Built on a Versatile Client-Server Architecture

by

Matthew W. Lee

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 23, 2001

Copyright 2001 Massachusetts Institute of Technology. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author

Department of Electrical Engineering and Computer Science

 May 23, 2001

Certified by

Judith Donath
Assistant Professor of Media Arts And Sciences

Thesis Supervisor

Accepted by
 Arthur C. Smith

Chairman, Department Committee on Graduate Theses

Chatscape: A Behavior-Enhanced Graphical Chat
Built on a Versatile Client-Server Architecture

by

Matthew W. Lee

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 23, 2001

ABSTRACT

Chatscape is the latest in a series of non-representational chat systems. The
system provides users with autonomous behaviors, which form a new channel of
online communication. The behaviors allow users to enhance conversation with

contextual information, much like body language is used in real-world
conversation. These behaviors can act autonomously or at the user’s command.

The unique configuration of behaviors by each user contributes to their online
identity.

A robust, general-purpose server platform entitled SMGServer was developed for
several Sociable Media Group chat projects, including Chatscape. Its design
was heavily influenced by Chatscape, and its successful implementation and

execution was pivotal in the development of several chat projects. SMGServer is
now a major component in a set of software tools that will be used for future chat

projects.

Thesis Supervisor: Judith S. Donath
Title: Assistant Professor of Media Arts And Sciences, MIT Media Laboratory

3

Table of Contents
Acknowledgements .. 4
1. Introduction... 5
2. Goals.. 7
3. Previous Research ... 8

3.1. Chat Circles ... 8
3.2. Body Chat .. 9
3.3. Comic Chat .. 10

4. Overview of Chatscape... 12
5. Client Description ... 15
6. Behaviors ... 19

6.1. Personal identity traits.. 20
6.2. Identity traits set by others ... 21

7. The Chatscape Design Process ... 24
8. The SMGServer Design Process.. 28
9. Implementation ... 34

9.1. Technologies Used in Chatscape and SMGServer... 34
9.2. SMGServer Implementation Details ... 35
9.2.1. Threading.. 35
9.2.2. Sample Modules for Developers ... 37
9.2.3. Tighter Integration with Windows NT/2000 Services 37
9.2.4. Developer Feedback ... 38
9.3. Chatscape Implementation Details... 39

10. Future Directions .. 41
11. Conclusion.. 42
12. References ... 43

4

Acknowledgements

I would like to thank the following people:

Judith Donath, whose guidance, support, and advice during the last three years,

especially during this thesis project, have made my time at the Media Lab and MIT truly

memorable and enriching.

Hal Abelson, my academic advisor, who has kept me on a good path through

Course 6 and to an exciting career.

Dana Spiegel, for his invaluable design suggestions and implementation

assistance for Chatscape and SMGServer, and for picking up the slack on other projects

while I wrote my thesis.

Fernanda Viegas, for bringing me into Sociable Media to help build Chat Circles,

and for all of her design advice over the years.

danah boyd, for her comments and contributions to the design of Chatscape, as

well as the design of one of the behaviors for Chatscape.

Wesley Chan, Michael Goertz, and the rest of my close friends at MIT, for

helping me enjoy life at MIT as much as possible.

Mom, Dad, Andy, Chris, Grandma, and Grandpa, for providing unwavering

support and love during my life and my 5 years at MIT.

5

1. Introduction

 Over the last three years, I have been involved with a series of chat projects for

the Sociable Media Group at the MIT Media Laboratory. All of these projects have been

non-representational graphical chat interfaces, meaning that while the chat programs

represent individual users onscreen using graphics, the graphics that are chosen do not

look like human users. During the development of these chat interfaces, several

research questions have been studied, and a growing collection of technical knowledge

has been built to make future development easier.

 This thesis will focus on Chatscape, which is the latest in a series of chat

systems. Chatscape was developed to explore how behaviors can be added to a non-

representational graphical chat environment, and how the usage of behaviors can

contribute significant additional information to a conversation. Communication in a face-

to-face setting is much more than just the words that are being spoken; it is a

performance of body language, facial expressions, tone, and overall behavior.

Chatscape is an online chat system that adds some of this performance aspect of

conversation into online communication, using a behavior system that speaks a virtual

body language. Each Chatscape user can configure their online identity’s behavior

settings to best describe the type of person that they would like to be. The result is a

more vibrant, more communicative space where conversation is more expressive

through the use of behaviors.

 In addition to Chatscape, this thesis will describe SMGServer, which is the server

technology that is used to build most of the chat projects that have been developed in

Sociable Media, including Chatscape. SMGServer is used strictly as a fixed foundation

for project-specific chat servers, ideally requiring no modification to SMGServer code by

developers. The server began as part of an overhaul plan for Chat Circles, the first

6

graphical chat program developed by Sociable Media. However, several other projects

where SMGServer was used factored heavily into SMGServer’s design, especially

Chatscape. The initial design for SMGServer focused on Chat Circles, while

accommodating the anticipated requirements for the other projects. As the other

projects came to fruition, the decisions that were made for SMGServer’s architecture

were proven correct, as only a small amount of architectural changes were necessary to

support all of the other projects. Because of its success, SMGServer is now one of

many underlying tools that are used by Sociable Media students to build new chat

interfaces.

7

2. Goals

 The largest research area of Chatscape is a study of online identity. The online

world has a different set of rules and structures for expressing identity, since real-world

concepts like clothing, body language, speech patterns, and other such things do not

have direct analogues in the online world. Despite the different ways of representing

identity that the online world must use, influences on your personal identity can come

from similar places, such as your own influences and the influences of others.

Chatscape is a system where the identity profile you develop for yourself can also be

adjusted by other users. One of the research goals for this project was to see how

online chat is affected by this model of identity. Furthermore, I wanted to see if this

model would make online chat more interesting or entertaining.

 SMGServer can be seen as a separate project that is closely tied to Chatscape

from a technological point of view. Although a completely custom chat server could

have been developed for Chatscape, it made more sense to develop SMGServer as a

server platform for multiple projects. Also, a new chat server platform was needed for

other projects before it was needed for Chatscape. Therefore, the goal of SMGServer

was to provide a general-purpose chat server platform to multiple projects, while

allowing a great deal of customizability so that the general-purpose nature of

SMGServer would not be a hindrance.

8

3. Previous Research

 Several previous works influenced the research directions for Chatscape and

influenced design decisions for SMGServer. This section will highlight some of the more

prominent pieces of work that are referenced in this thesis.

3.1. Chat Circles

Figure 1: Chat Circles 2.

 Chat Circles [Viegas 99] is an abstract graphical chat room project designed by

Fernanda Viegas. Shown in Figure 1, Chat Circles features a single chat room for all

conversations, instead of using multiple separate rooms or “channels” that other chat

9

systems use to separate conversations by topic. The chat room is a large 2D virtual

space, in which small colored circles represent users; each user can move their circle by

dragging it with their mouse. When users chat, their circles expand, and their chat

messages are drawn inside their circles. After a short period of time, their circles

contract back to a small size. The concept of “hearing range” is introduced to filter out

separate conversations; a user can only read chat messages from other users that are

within a certain radius from the user. This feature makes people intuitively arrange

themselves into separate conversation clusters, much like people at a party.

 Chat Circles forms the foundation for Chatscape, both visually and technically.

The Chatscape chat environment is visually very similar to Chat Circles, featuring simple

graphical shapes, hearing range, and one single chat room. Chat Circles is designed to

be a very simple, featureless graphical chat system that can serve as a base for more

complex chat systems. Chat Circles is a direct antecedent to Chatscape, both

conceptually and technically; Chatscape seeks to apply additional conversational

methods into graphical chat, resulting in a more complex environment.

3.2. Body Chat

 Body Chat [Vilhjálmsson 98] is a graphical chat system developed at the MIT

Media Lab that uses 3-dimensional human-like avatars to represent users in the system.

Users use standard text chat to communicate with each other in the system. Body Chat

features a behavior system that is used to manipulate each avatar in response to the

current conversation, using hints derived from the text chat messages. Most of these

behaviors are used to maintain the human-like appearance of the avatar; for example,

behaviors are used to indicate attention, facial expressions, blinking, and other

“maintenance” tasks that are intended to contribute additional information and context to

10

the conversation. Additionally, each user is in control of a few high-level aspects of their

avatar’s behavior, such as conversational availability.

 Chatscape features similar groupings of behaviors as Body Chat, such as

behaviors that are largely autonomous, versus aspects of behavior that are controlled by

the user. However, Body Chat is used here as an example of how the selection of

behaviors can be restricted by the choice of avatars in a chat system, and therefore the

resulting behavior sets may not be able to contribute much worthwhile information to a

conversation. The choice of a human-like avatar brings with it all sorts of expectations

which must be satisfied by maintenance behaviors that make the avatar’s appearance

acceptable and believable. If the behaviors are poorly done, or not appropriate in their

operation based on the ongoing conversation, they can actually detract from the value of

the conversational experience. Chatscape, on the other hand, uses abstract user

representations that are mostly free of predefined expectations, removing a huge burden

from the selection and operation of the behaviors available to users.

3.3. Comic Chat

 Comic Chat [Kurlander 96] is a graphical chat interface that displays

conversations as ongoing comic strips, styled after the Sunday funny pages in a

newspaper. Users select one of a handful of cartoon characters to represent

themselves, and as they chat in a chatroom, their character is added to each panel as

necessary. Comic Chat also allows users to specify an emotion from an emotion wheel

that is displayed by their character when they chat; while this is a small amount of

additional information, it helps contextualize the current conversation quite well. While

Chatscape does not provide functionality as explicit as an emotion wheel, it serves to

demonstrate how simple behaviors can greatly enhance a conversation.

11

 Another interesting aspect of Comic Chat is that while each user can select their

character and emotion while they chat, it is ultimately up to the system to choose how

their character is displayed in the comic panels. Through intelligent analysis of

conversation patterns and the usage of a few simple rules, Comic Chat lays out the cast

of chat room participants in the most aesthetically pleasing manner. This type of

arrangement is not used in Chatscape, but there are a few aspects of Chatscape that

remove total control over one’s appearance from a user.

12

4. Overview of Chatscape

 Chatscape is a client-server graphical chat system, meaning that there is a client

application that users download and use to access the Chatscape system, as well as a

separate server application that each user’s client connects to over the network. The

client displays information, including the chat conversation, as graphics in a window.

However, Chatscape is not the first chat system of this type.

Chatscape is the most recent chat system in a series of chat systems based

upon Chat Circles. Throughout this lineage of chat systems, several different issues

pertaining to online chat have been explored, including the behavior system in

Chatscape. Chat Circles was followed closely by Talking in Circles, an audio chat

project; later came TeleAction; a collaborative tele-direction project, and finally

Chatscape.

 Chat Circles was meant to be an extremely simple abstract graphical chatroom;

one that could be quickly grasped by users. Details were kept to a minimum in Chat

Circles for several reasons; not only was the system intended to explore a few select

issues, but it was also designed as a “base” project for other projects to build upon in the

future.

 Talking in Circles [Rodenstein 00],

Roy Rodenstein’s MAS masters thesis

project, took Chat Circles into the audio chat

realm by adding realtime voice

communications. A screenshot is shown in

Figure 2. Text chat messages were

replaced by a realtime audio amplitude

“throbber” in each user’s representation,

Figure 2: Talking in Circles

13

allowing a user to quickly identify another user’s voice based on visual activity from their

circle. Additionally, the system allowed each user to draw on their own circle, which was

a freeform way to temporarily “mark up” one’s identity in the space, providing a second

mode of communication. Additionally, Talking in Circles featured areas in the chat

space that played various audio clips or live audio feeds, which could give conversations

a pleasing background or a focus of attention.

 The TeleAction system [TeleActor 01] was developed to explore the idea of

allowing a group of people online to collaboratively control a scarce resource, in this

case a remote human “actor” outfitted with a video camera and other equipment to

receive directions from the online crowd. The video from the actor is displayed as a

“stage” in the graphical chat environment, and serves as a work area for group decision-

making. As the crowd votes on what goal the person should perform next, a voting

system collects the votes and relays the winning goal to the actor. While the graphical

representations in TeleAction are just as simple as in Chat Circles, the role of movement

and position in the space are extremely important in the voting process. While Chat

Circles and TeleAction used movement only for conversational filtering based on hearing

ranges, movement in TeleAction is used to highlight positions in a constant video feed

and demonstrate support for others’ goals. This system therefore encourages a highly

functional gesture language for collaboratively making decisions.

 Chatscape takes elements from all of its predecessors, resulting in a highly

unique graphical chat environment. A more flexible graphical representation is used to

display several different aspects of identity and behavior. By default, the representation

is a colored regular polygon, but the polygon can be distorted and adjusted in several

distinct ways. Autonomous behaviors are available to each user in order to describe a

detailed identity; with this identity, the combination of the user’s actions and the actions

performed by behaviors results in a complex, yet readable, online persona.

14

In this way, behaviors are used as another conversational medium, much like

body language is used to augment real-life conversations with additional detail or

contextual hints. Each user has a persistent profile in the Chatscape system, which

allows behavior settings to be kept from session to session, allowing users to establish

and use a personal and identifiable set of behaviors over a long period of time. The

interface for adjusting behavior properties is made as simple as possible, geared

towards being used to make small tweaks as quickly as possible.

The combination of behaviors with simple abstract graphical representations

allowed me to create a completely new behavior language for Chatscape, one that

would be free of pre-existing stereotypes and expectations. Nobody expects any

particular mannerisms to be exhibited by colored shapes. However, there are a few

visual metaphors that can be recognizable from colored shapes, such as roughness and

smoothness representing chaos and tranquility, respectively. Even though certain

properties of shapes can be generally recognized as different moods or meanings, the

shapes do not come off as anthropomorphized. Body Chat, as mentioned earlier,

features avatars that are rife with expectations; a humanoid avatar that did not exhibit

basic human-like motions and expressions would be disconcerting and strange to users.

Additionally, the lack of recognizable avatars allowed me to display interactions between

users that would be unexpected or impossible in humanoid avatars, such as one user

making another user move around against their will.

15

5. Client Description

 The Chatscape user interface is designed to allow users to quickly grasp the

concepts behind graphical chat, and manage the complexity that can be associated with

controlling and configuring all of the behaviors. Figure 3 shows a typical chat session

between 3 people.

Figure 3: The Chatscape graphical chat interface.
The Chatscape window features several elements. The main area is a window

into a large virtual chat environment; in this case, the chat environment is 2000 by 2000

pixels, and the window is only a few hundred pixels on a side. At the bottom of the

window is the chat input area, where a message can be typed – pressing Enter after

typing a message submits the message. It is accompanied by a “chat type” combo box,

which can be used by behaviors to process chat messages in various ways before

16

submitting them. In the upper left corner, a mini-map reminds users what part of the

chat space that the window is currently revealing; the current window is the small

rectangle, and the boundaries of the chat environment is the large square. Users are

represented in the mini-map with a colored dot, the same color as their representation.

The scrollbars to the right and bottom of the window can be used to view other areas of

the chat environment. Finally, at the bottom of the window are three display tabs, that

take the user to the chat history and the user configuration screens, which will be

discussed later.

In Figure 3, Matt is the local user, which is also reflected in the window’s title bar.

The three users, Matt, Andy, and Dana, are positioned at the upper left corner of the

large graphical chat space. Each user is represented by a colored shape, and can move

their own shape around by dragging it with their mouse. The local user’s shape is

outlined in white. The white outline graphical metaphor for the local user is a Sociable

Media standard of sorts for graphical chat, dating back to the first version of Chat Circles

in 1998. Shapes can be dragged to offscreen areas of the chatroom by dragging

beyond the extents of the window; the scrollbars will scroll to the desired location, and

the minimap will update accordingly. Chat messages are displayed in chat “balloons”,

similar to those of Comic Chat and other comic book illustrations. After a short period of

time dependent on the length of the message, each chat balloon deflates and

disappears. Each user’s name is displayed directly below their shape, and is initially

quite small. When the local user moves their mouse over a user’s shape, their name

expands to a more readable size. This was designed so that the chat space would not

be cluttered by names.

Surrounding Andy in the chat space is a context menu, which was summoned

when Matt clicked on Andy’s shape in the chat space. The selection of items in this

menu reflects the options that Matt’s behaviors have provided for operation on Andy.

17

Andy has just spoken an oft-repeated nonsensical phrase, which by this point has

become obnoxious to Matt, as well as Dana. Matt has moused over the “Andy is

Obnoxious” command, and that command is highlighted since the mouse is placed over

it. The command is executed with a single click, and the menu closes.

Figure 4: The user and behavior configuration panels.

Figure 4 shows the two configuration panels, accessible via the “configure” tab at

the bottom of the window. The user configuration panel is where the user’s color and

shape details can be changed. The shape has two directly configurable options; the

side count can be changed from 3 to 16 sides, and the rotation rotates the shape about

its center, allowing two users with the same number of sides in their shape to look

different.

The behavior configuration panel is where behaviors can be enabled or disabled,

as well as configured. The list on the left shows the full list of behaviors that are

available, along with a checkbox indicating whether each behavior is enabled. Double-

clicking on a behavior enables or disabled a behavior, except for behaviors that are

always enabled, such as the Appearance behavior. The always-on behaviors provide

essential functionality to the system, and cannot be disabled. When a behavior in the list

is selected using the mouse, configuration options for that behavior (if there are any) are

18

displayed in the right side of the panel. In Figure 4, the two options for the Appearance

Blend behavior are displayed, and changing these sliders affects the behavior in real

time.

19

6. Behaviors

The goal of using behaviors in Chatscape is to allow participants to use

behaviors as another channel for information exchange. This goal reflects observations

from real-world conversations, where people often use body language to enhance,

clarify, or contextualize their spoken words. Also, behaviors in a chat system can be

used in ways that go beyond what is possible in real-life conversation; an example being

behaviors that allow people to directly control another user’s identity, without that user

being able to intercede. Also, on a more functional level, behaviors in Chatscape are

sometimes used to simplify complex or time-consuming tasks, like moving around in the

space.

 Chatscape differentiates itself from previous behavior-based graphical chat

environments by using extremely simple graphical representations (colored shapes) as

avatars. These shapes are endowed with many different visual attributes, including

autonomous and user-driven behaviors. These attributes range from simple things like

the color and shape of a user’s representation, to complex system-wide behaviors that

involve the actions of multiple users over a long period of time. These attributes can be

combined together in various combinations by each user, resulting in a virtual identity

profile that represents a user in the Chatscape environment.

 Because Chatscape’s user representations do not belong to a common theme in

chat programs, I could define a brand new vocabulary for behaviors in a graphical chat

system. Consequently, every user of Chatscape will learn to interpret this vocabulary

without any prior expectations factoring into their interpretation.

Chatscape provides over a dozen behaviors and visual attributes that can be

used to give each user a unique identity. Each attribute can be thought of as belonging

to one of three categories. The first category includes attributes that a user directly

20

controls. The second category is the attributes that only other users have control over.

Finally, the third category is attributes that only the chat system can control; these

attributes usually affect users over a long period of time.

6.1. Personal identity traits

The first category is a very established type of attribute among all online

communications tools. As such, these attributes are usually quite simple. In Chatscape,

this category of attributes includes a user’s name, a user’s color, and the shape of a

user’s representation. These attributes are chosen for a new user immediately as they

join the chatroom, making them the most immediately recognizable aspects of a user’s

identity. In addition to these simple attributes, there are two more attributes in this

category that are more complex, yet still completely controlled by a single user.

The movement behavior allows a user to navigate about the chatroom in a more

passive way than direct manipulation of the representation (dragging with the mouse). A

user can simply click on a spot in the space, and the movement behavior will “walk”

there. The movement behavior has several different styles of movement, each with their

own individual character.

Another behavior, the avoid and follow behavior, was developed as an extension

of the movement behavior. By clicking on other users, each user can maintain an

internal list of users they would like to follow, and users they would like to avoid. When a

user decides to follow two other people who are not near each other, the user will be

drawn to a point between the two other people, as if they were in a tug-of-war match.

Avoiding multiple users is more meaningful; the user is simply pushed away from all of

the users they wish to avoid, as quickly as possible. Overall, the avoid and follow

behavior allows a user to maintain a close distance to their friends, and stay away from

21

undesirable users, while freeing up their hands to chat as this movement is going on

autonomously.

6.2. Identity traits set by others

 Chatscape’s second class of behaviors are those where other users can directly

control aspects of your identity. There are very few examples from the real world that

demonstrate this type of behavior, since most people are ultimately in control of their

own identity at all times. One example of this behavior would be when a group of people

gives a label to a person, and people react to that label in a manner separate from the

reaction to the person. Military insignia works in this way as well; a small piece of

decorative cloth granted by an organization of people brings with it expectations as to

how people should act around a person wearing this insignia.

 There are several online systems that use a variant of this concept extensively, in

the form of “reputation” systems. Web sites like eBay, Epinions [Web 01], and other

sites that negotiate transactions and information exchanges between their users require

a way to associate an individual’s value and responsibility with said transactions. The

reputation that each user has in the system is directly influenced only by other users,

and it is usually manifested in a numeric rating of some sort. Also, web site reputation

systems tend to have long term and often irreversible effects; feedback collected from

other users usually becomes part of your “permanent record” on a particular website.

Chatscape behaviors that are controlled by other users are intended to operate in a

similar fashion, but represent more subjective or intentionally vague topics than “how

many people have said good things about me”. The feedback mechanisms are much

more casual, implemented through simple one-click interfaces that are visually

connected with each user in the space. Also, Chatscape reputation feedback is

22

intended to be more short-term and ephemeral. No reputation-like behaviors have any

permanent or even long-term effects; in most cases, any graphical indication of feedback

from others is gone within minutes. The lack of permanence for reputation data

contributes to a more friendly chat environment, where even the most annoying users

are able to make amends with others over time.

 The hearing range that is present in Chatscape results in users forming natural

“conversation clusters” around the space. The appearance blend behavior can further

differentiate these clusters by blending together the colors of users that group together

for a period of time. For example, if a red shape and a blue shape were talking to one

another for several minutes, they would both slowly transform to purple shapes. When

the two shapes finally move apart, their colors blend back to their original hues. An

anticipated side effect of this behavior is a sort of fashion feedback loop; since the

effects of this behavior are delayed and work over time, certain hues could be

transferred across a large group of users as they all move about.

 While the appearance blend behavior is more of a participatory behavior, the

group labeling behavior is a much more direct, person-specific way of allowing other

users to affect one’s identity. With this behavior, anyone can select a label from a list of

labels and apply that selection to another user. The labels include “Obnoxious”,

“Funny”, “Weird”, and “Cool”; each label causes a different change in another user’s

appearance. The Obnoxious label is the most interesting label. It was conceived out of

a desire for some sort of moderation system for obnoxious or disruptive users. When

multiple people tag a user as “Obnoxious”, their shape develops spikes, which symbolize

hostility. The spikes are an example of how colored shapes can express a commonly

acceptable notion like hostility while remaining nondescript and abstract. Over time, the

spikes smooth out and disappear, provided the user has not been tagged as Obnoxious

23

anymore. This allows someone to make amends to other users, or recover from unfair

labeling.

24

7. The Chatscape Design Process

 Chatscape began as an undergraduate research project in Spring 2000. It builds

upon work done by others and myself before that time. While the first versions of

Chatscape were very similar in appearance to the current version, the implementation

has changed a great deal over the course of the project. During the various stages and

prototypes of Chatscape’s development process, several features and design elements

have remained relatively constant, while others came and went as the project gained

focus over time.

 The behavior system is the largest aspect of the early Chatscape prototypes that

was transferred to the final Chatscape without significant changes. This module was

called the Behavior Manager. The prototype behaviors, much like Chatscape behaviors,

were each individual objects, implementing a common interface. The Behavior Manager

organized behaviors in an array, much like SMGServer organizes users in

Environments. The entire volume of message traffic going into and out of the client was

also sent to each behavior, essentially making each behavior a participant in the chat

system just as much as the human user operating the client. This allowed behaviors to

respond either passively to specific message types, or operate in a more active mode,

periodically taking action based on an internal timer.

 The other major feature that carried over relatively unchanged was the context

menus. To activate behaviors on other users or locations in the 2D space, a context

menu is used. The entries in these context menus are determined by the set of active

behaviors and the selected user or location. Some behaviors rely on these context

menus for input from the user; for example, the Avoid and Follow behavior uses context

menu input to build the lists of users to be followed or avoided.

25

Instead of implementing a simple rectangular popup menu, similar to right-click

actions in Windows applications, I chose a more interesting circular pop-up menu

inspired by the context menus in the popular computer game “The Sims” [Maxis 00],

which are based on research by John Carroll [Carroll 91]. In addition to being more

visually attractive, the menu does not obscure the user or location bring selected, as the

menu items surround the selection. The only drawback to these menus is scalability. As

the number of items in the menu increases, all items in the menu get farther and farther

from the selection.

 While the context menu concept did not change in appearance during the project,

the implementation did change a great deal. The initial implementation featured a

reasonably complex command registration model. This model allowed behaviors to

register a command that would appear on the menu, and if the behavior were to be

disabled, it could unregister commands as well. This worked well, but it relied on the

proper operation of behaviors to make sure that commands did not appear on the menu

when they weren’t supposed to.

The second and final version of context menus featured a polling model, where

each behavior is asked to provide commands for the menu each time the menu is

opened, in the context of what the menu was opened upon. For example, if the user

clicks on the user “Matt”, each behavior is asked what commands should be presented

for the context menu for Matt. This model incurs more processing overhead than the

previous model, but as a benefit, it allows commands to be customized for the user or

location being clicked on. Instead of the avoid and follow behavior presenting the simple

commands labeled “Avoid” and “Follow”, it can present “Avoid Matt” and “Follow Matt”.

Additionally, if the user is following Matt and clicks on Matt again, the command “Stop

Following Matt” can be presented by the behavior.

26

There were a few concepts and ideas that were dropped or not developed during

the development of Chatscape. The first such concept was the notion of having users in

the system that were completely controlled by behaviors, and therefore run as part of the

chat server. These automated users were introduced for two reasons. First, they were

seen as a way to make a more continuously interesting chat room, where things would

be happening even if no human controlled users were in the space. Second, they were

introduced as an experiment, to see if people could distinguish other behavior-enhanced

human users from completely computer-driven users.

Two computer-driven personalities were developed, the first called “Village Idiot”

and the second was “Eliza”, named after the famous virtual psychologist program.

Village Idiot simply spouted out a random “insane” sentence when people chatted

around Village Idiot. The insane sentences were harvested from the latest version of the

text editor Emacs, where they are known as the “pinhead” automated response program.

Eliza, as mentioned before, is a virtual psychologist. For the code, I re-wrote a simple

JavaScript version of Eliza that I found on a web page.

Ultimately, the two personalities were just a gimmick. Their gross simplicity

made them clearly distinguishable from a human, and they added no real value to

Chatscape, other than some occasional entertainment. Also, the method of their

operation was very similar to Internet Relay Chat (IRC) “bots”, which are simply scripted

programs that respond to people using IRC [Oikarinen 93]. Based on these factors, I

decided that the personalities were not interesting enough from a research standpoint to

re-implement for the final version of Chatscape.

One concept that never left the planning stages was that of interactive

backgrounds, where the background of the chatroom would have some sort of

geographical diversity that would interact in some way with behaviors. The most

interesting scenario that I developed was that the Chatscape space could have areas

27

with different visual properties, such as areas in the light and areas in shadow, and that

behaviors would be able to distinguish between the two and move around accordingly.

Also, similar to the audio spots in Talking in Circles, there would be “landmarks” in the

chat space that would be interesting or intriguing, causing behaviors to react differently

in their vicinity. While this concept was not developed at all in Chatscape, a variant of

this was put into Chat Circles in November 2000, in the form of pictures that could be

placed around the chat space. The pictures were meant to serve as conversational

pieces, much like the paintings in an art gallery.

28

8. The SMGServer Design Process

 SMGServer was conceived as a server in a client/server architecture that would

serve the needs of several Sociable Media Group online chat projects, including the new

version of Chatscape described in this thesis. At the time, Sociable Media’s first major

online chat project, Chat Circles, was a permanent web installation, and was attracting a

small yet steady flow of regular visitors. However, the Chat Circles server was not

capable of running for long periods of time, especially with a constant load of users. At

the beginning of fall term 2000, I decided to build a new server for Sociable Media, one

that could be initially used for a new version of Chat Circles, and then used for my thesis

project a few months later. Additionally, the TeleAction project that was just getting

started in Sociable Media was in need of a chat server. As the server was going to be

used for a variety of Sociable Media Group projects, I named the project “SMGServer”.

 The most important factor in the design of SMGServer was the assumptions that

were made about what features projects would demand from SMGServer in the future.

There were several projects still in planning phases, and some projects that were

already well established, like Chat Circles. These projects collectively required a large

number of features from a chat server, and I had to decide which features would be the

most generally useful to most or all projects.

 The first project I took into consideration was Chat Circles 2. This project was to

be a complete overhaul of an established project, with the goal of providing a more

usable and reliable graphical chat platform for future projects to build upon, as well as a

permanent fixture on the Sociable Media web site. Chat Circles did not demand much

from its server; the feature list included simple message passing between users, a small

amount of properties to be kept with each user, and a simple file logging interface for

writing chat log files to disk. The login process was very open; no persistent user

29

accounts or passwords were needed to login to Chat Circles. Additionally, Chat Circles

only required one “room”, while most other chat systems, like IRC, support hundreds or

thousands of simultaneous rooms.

 The next project that I considered was the TeleAction project. This project, from

the point of view of a developer, was very similar to Chat Circles. Only one room was

needed, the login system was the same, and very little information was needed for each

user. However, TeleAction introduced a live video stream into the graphical chat

interface, which needed to be controlled by an “administrator” that would somehow be

logged in to this chat system. Briefly, I considered allowing SMGServer to be the

mechanism that would deliver the streaming video to clients; however, after realizing the

performance requirements for this task, and the fact that only TeleAction would be using

video, I decided to leave the actual task of delivering the streaming video to commercial

software designed for that task. Therefore, SMGServer would only have to distribute

control messages of some sort that would instruct clients about how to access a

separate streaming video server.

 Finally, I considered Chatscape as the third project to use SMGServer.

Chatscape was somewhat similar to Chat Circles as well, but a few important new

features were required above what Chat Circles and TeleAction needed. First, the data

associated with a user was going to need to be very detailed and very flexible; each

behavior would have a multitude of properties, and the various aspects of each user’s

identity would need their own data elements as well. This set of properties would need

to be kept with each user on the server, and distributed out to each user as they

connected to the system. Also, to support long-term development of identities,

Chatscape needed two things – persistent storage of user properties and a password-

protected login to prevent identity theft.

30

After getting a list of features from the projects that SMGServer would be used in,

I briefly studied the existing Chat Circles server code for additional insight into the design

task. I noticed that while the project-specific code in Chat Circles was fairly robust, the

“plumbing” code that took care of more mundane tasks like message passing, network

I/O, and user logins was not very reliable, especially over long periods of time. This

made sense, since from the point of view of an academic researcher, the unique aspects

of a specific project are worthy of more attention than the underlying generic code that is

required in order to make the system work. I concluded that if SMGServer could provide

a generic, robust, and reliable level of “plumbing” to project servers, it would save a lot of

development time and allow researchers to focus on project-specific server code and not

the intricacies of network programming.

 The original design document for SMGServer was never formally completed, but

the high-level design and the feature list were discussed extensively with Dana Spiegel

(a master’s student who would be using the server), Prof. Donath, and others. The

server is implemented in Java, which is the most popular development language in the

Sociable Media Group, and therefore SMGServer would be more accessible to other

developers in the future. The high-level design of the server is a message-passing

architecture, where messages from users are received from each user and sent out to all

other users of the system. This is a very standard architecture, and is used by many

commercial multi-user servers for gaming, chat, and other applications. Message

passing is only one of the set of services that SMGServer provides, along with user

logins, user data management, and user group management.

 The process of accepting a login from a user involves several steps. First, an

incoming TCP/IP connection from the client must be opened and kept track of. Next,

login credentials from the user must be validated, resulting in the decision to accept or

31

refuse login. Finally, a successfully logged in user must be added to the current set of

users that are already logged in, so the new user can communicate with other users.

 User data management refers to the maintenance of a set of data that is

associated with each user. For a typical chat project, this usually includes data like a

user’s name and the IP address they are connecting from, for logging purposes. More

complex chat systems may need to store more detailed information about a user, such

as color, shape, and location in a virtual space. To provide the most flexible and

extensible user data storage structure, SMGServer maintains a simple key-value data

structure for each user, which allows any arbitrary object to be stored and referred to by

a string name. A hashtable is used for this data structure. While a hashtable may be

considered overkill for storing one or two data items, it maintains a high level of

efficiency when tens or hundreds of properties are involved, and the interface remains

the same regardless of the amount of contents.

 SMGServer arranges users into “environments”, which are simply arrays of users

that represent a group of users that can communicate with one another. This concept

has different names in other chat systems; for example, Internet Relay Chat calls these

groupings “channels”. SMGServer includes this functionality for two main reasons.

First, the message passing architecture is centered mostly around the environments, as

this is where messages from one user are broadcasted out to other users. Second, this

functionality is necessary for all of the projects SMGServer was being designed for.

 Although all of the projects that I considered during the design phase only

required one room, I decided in the design phase to support multiple simultaneous

environment objects in SMGServer. The added complexity of supporting multiple

environments versus just one environment was not a burden, and it seemed like the right

thing to do at the time, even though there was no perceived need for this feature. This

design decision was vindicated later, when Dana Spiegel started the ChessMates

32

project. ChessMates is an offshoot of the TeleAction project featuring team-versus-team

collaborative chess gaming. Initially, Dana tried to put both teams in one environment,

but the complexity of separating team conversations into two groups of users in one data

structure proved to be too great. A second environment was added, so that each team

would use its own environment. The dual-environment approach proved to be the right

choice, as the complexity of maintaining two separate teams of users was somewhat

offloaded onto the SMGServer architecture.

To customize SMGServer for a specific project, a developer must build only two

modules that contain all of the functionality that makes that specific project unique.

Through the usage of Java dynamic class loading, these modules are discovered and

loaded at runtime by SMGServer. The first module, called the Server Core, includes

several hooks into SMGServer that are activated for various events. These hooks allow

the Server Core to perform custom startup tasks, modify users as they log in, and

receive a copy of every message that is sent through the system. Since the Server Core

is kept abreast of all of these different events, it can perform custom tasks in response to

just about anything that happens within the server. The second module is called the

Login Validator: it allows a developer to validate user logins based on the set of

credentials that the client presents at the beginning of a session. This module was

made customizable so that a developer could make complex decisions based on login

credentials. For example, a developer could look up the credentials in a database, and

only allow access to users in the database.

A developer using SMGServer for a project must implement the two

aforementioned modules, but is not expected to have to modify SMGServer itself. In

fact, a design goal of SMGServer is that it is distributed as a library, not a code base.

Developers should not need to modify SMGServer source code in order to achieve their

33

desired functionality. By strictly enforcing the modularity of SMGServer in this way, the

long-term usefulness of SMGServer as a generic server platform will be better ensured.

SMGServer was also designed to make client development easier for a new

project. A great server is useless if communicating with it is difficult. Therefore, a

significant portion of the network communications code on the server side is also used

on the client side, and a few extra client-side modules were designed to make client

development relatively hassle-free.

34

9. Implementation

 This section will cover the technologies used to implement Chatscape and

SMGServer, and highlight several important implementation details that affected the

operation and performance of both projects significantly.

9.1. Technologies Used in Chatscape and SMGServer

 Both Chatscape and SMGServer are implemented in Java, more specifically the

Java2 platform. Early Chatscape development work was done in Java2 version 1.2,

while SMGServer and the final version of Chatscape were done with Java2 version 1.3.

Java was chosen so that the Chatscape client could run on a variety of Java2 platforms,

including Windows, Linux, and most popular Unix operating systems. SMGServer was

written in Java so that it could better integrate with Java clients, and also because of the

easy to use and feature packed Java class libraries.

 Development was done primarily on Pentium 3 workstations running Windows

2000, using the Symantec/WebGain Visual Café 4.0 development environment. Visual

Café was chosen because of its familiarity and feature set, and its successful use in past

projects. Some SMGServer development work was done by Dana Spiegel on similar

workstations, using the Metrowerks CodeWarrior development environment. One of the

benefits of Java was that the same code could be developed by people using different

development environments; other languages such as C++ tend to be more tied to a

specific development environment in order to use advanced features.

 SMGServer was deployed on Linux first, followed by Windows 2000 Advanced

Server. Initially, the Sociable Media “server machine” was a Pentium 2 300 MHz

computer running Linux, and the first Chat Circles 2 server powered by SMGServer was

deployed on that machine. However, after months of active use, it became apparent

35

that the Java runtime environment on Linux was not adept at handling applications with

dozens of threads, like SMGServer. The Chat Circles 2 server was then moved to a

dual processor Pentium 2 300 MHz machine running Windows 2000 Advanced Server,

and the server has performed much better ever since.

 The Chatscape client, like the Chat Circles 2 client, is deployed as a Java applet

on a Web page, running on the Java Plugin. The Java Plugin is a full implementation of

the Java2 platform that operates as a browser plugin for popular browsers on many

platforms. Although a Java runtime engine is a common built-in feature in Web

browsers, the engine provided with almost all popular browsers, including Microsoft

Internet Explorer and Netscape Navigator, is outdated and not very reliable. The Java

Plugin allows any plugin-compatible browser to run a full-featured, modern Java2

environment, with a seamless appearance to the user.

9.2. SMGServer Implementation Details

This section highlights the interesting aspects of SMGServer’s development,

including changes that were made to the design of the server long after the project was

initially developed.

9.2.1. Threading

 Fundamentally, a chat server is responsible for passing messages from one user

to all other users, and perform this task for all users at once. However, a computer can

only do one operation at a time, so a strategy must be developed for performing many

simultaneous actions all at once while doing only one action at a time. The simplest

solution is to just address each user individually in a round-robin fashion. However, this

leads to a problem – if one user takes a large amount of time to send or receive

36

messages, the whole system must wait before servicing the next user. This problem,

known as “blocking”, can be avoided by using multiple “threads” of execution, where

many individual tasks are done at once, and the operating system is responsible for

timeslicing all of the threads, so that only one thread is running at a given instant.

 The Quicktime Streaming Server [Apple 00], also known as the Darwin

Streaming Server, is a freely available multimedia streaming server for the popular

Quicktime digital video format. While this product bears little functional similarity to

SMGServer, part of its design can be compared to how SMGServer handles many user

connections at the same time. The Darwin Streaming Server FAQ briefly discusses the

system architecture, which describes how the system uses only a handful of threads,

and does not spawn one or more threads for each user.

 SMGServer uses threads extensively in its design; in fact, 2 threads are spawned

for each user that is connected to the server. That way, if one user is slow, only their

own threads are blocked, and the rest of the system operates normally while the slow

user waits. Therefore, a consistent level of service is given to users who are operating

normally, regardless of the quality of operation of other users in the system. However,

this is not the only benefit; since each thread is a separate running entity, an error that

occurs in one thread does not necessarily affect other threads. In this way, threads can

provide a level of fault isolation, so that errors in one part of the system do not bring

down the entire system. Additional threads are employed to “clean up” after threads

suddenly die due to errors; this ensures the system remains operational unless a truly

devastating error occurs.

The large number of threads used by SMGServer is somewhat of an anomaly

compared to other multi-user servers, like the Darwin Streaming Server. Java lacks a

feature known as asynchronous input/output (I/O), which is a way of accessing network

and other communications resources in an asynchronous fashion, rather than a

37

synchronous fashion. Asynchronous I/O ensures that sending and receiving data never

blocks a thread of execution; instead, the underlying operating system sends

notifications to a program when communications operations start and finish, in an

asynchronous fashion. In a way, the large thread count in SMGServer is a workaround

to this limitation in Java. The added complexity that is required for the threads in

SMGServer are handled by well-debugged libraries in other languages. Despite this

seemingly major drawback, the rest of Java’s features make up for this glaring omission

– but because of popular demand, asynchronous I/O will be a part of the next major

release of Java.

9.2.2. Sample Modules for Developers

 As mentioned earlier, developers must implement two modules in order to make

a custom SMGServer-based chat server for their project. While the requirements for

these modules are not very demanding, I decided to give developers even more to work

with as they start a new project. Sample modules are included with SMGServer that

provide a very basic level of functionality, and developers can choose to either use these

sample modules as-is, or extend upon them using Java object inheritance rules. The

sample modules include NullServerCore, a simple chat server core that implements one

room; FreeLoginValidator, a login validator module that accepts all credentials and logs

users in; and FileLogModule, a sample logging module that developers can use within

their Server Core module to log output to a file.

9.2.3. Tighter Integration with Windows NT/2000 Services

 The process of running a program in the background on a Unix machine such as

Linux is relatively straightforward; the command-line utility “nice” can run a program in

38

the background, and keep it running after you log off. However, Windows NT/2000

operating systems do not provide any such utilities. Background processes, or

“services”, as they are called in Windows, must be specially designed native-code

applications. While this may seem like an additional hassle for developers, the special

structure of a Windows service executable allows Windows to send special messages to

each service for startup and shutdown procedures, allowing services to start and stop

more cleanly.

 The JavaServ service runner [Giel 00] combines a Windows service executable

with a Java runtime environment, which allows Java programs like SMGServer to be run

as a service. I downloaded JavaServ, made a few small modifications, and now

distribute JavaServ with SMGServer. Additionally, JavaServ has been used successfully

for the Chat Circles server for several months now.

9.2.4. Developer Feedback

 Feedback from developers was very important during the development of

SMGServer. Dana Spiegel, during the development of TeleAction and ChessMates,

contributed many suggestions and some development work towards the betterment of

SMGServer. As designed, the server was used only in binary form in Dana’s work, and

he commented how stable the server was, as well as how quickly he was able to

implement projects using SMGServer. Dana’s development contributions to SMGServer

fell mostly in the areas of error handling and a better structure for the Environment

object’s connection back to Server Core objects. This better structure made the

development of the ChessMates server much more straightforward and error-free.

39

9.3. Chatscape Implementation Details

 The final version of Chatscape was built directly on top of the Chat Circles 2 code

base, which was developed in October 2000. Several factors were involved in the

decision to use Chat Circles 2 as a starting point for Chatscape. First, Chat Circles 2, on

a high level, is very similar to Chatscape, in terms of a single graphical chatroom and

simple geometric representations. Most of Chatscape’s development consisted of

adding modules to this relatively small codebase, instead of taking things away. At the

point where Chatscape development started, Chat Circles 2 was relatively mature and

very stable. Chat Circles 2 underwent several months of live testing by real users on the

Web, and it had also been prepared for a public exhibition, in which it would have had to

run virtually without interruption for at least 3 months. As a result, Chatscape was stable

and usable from day one, making it easy to test new features and modules.

 Chatscape employs a database on the server side to hold user account

information and user properties. So far, Chatscape is the only project that uses a

database; all other SMGServer-driven projects do not use persistent user accounts. The

database is a SQL database, using an industry standard ODBC database connection.

This type of database connection should allow any standard SQL database with ODBC

drivers to be connected to Chatscape. However, so far only a Microsoft Access

database has been used. I had the option to use Sociable Media’s Oracle server, which

is used for several other unrelated projects. Despite this availability, I decided to use

Access for its ease of configuration and its portability; since the database consists only

of one file, it can be copied anywhere and used anywhere. This allowed me to work at

home or at the Media Lab. Oracle requires a network connection on a local area

network, which would have prevented me from working at home. The only drawback to

40

using Access is the 256-character maximum size of data fields, which can be very

limiting for some properties.

41

10. Future Directions

 There are many ways that Chatscape and SMGServer can be extended in the

future. Due to Chatscape’s flexibility, Chatscape enhancements could follow along the

same lines of research as described in this document, or investigate completely different

topics of research.

 New identity variables and aspects of the visual representation could be

introduced. Right now, users are represented by simple shapes that can be distorted

and warped in several different ways, but more can be done without leaving the realm of

abstract graphics. I would like to see extensions and attachments to the visual

representation that represent different aspects of identity, much like clothing or jewelry,

but in a more abstract sense. However, care must be taken to ensure that the visual

representations do not become overly complex.

 I would also like to see more interactive behaviors, especially behaviors that act

upon patterns of past events stored in the history. A great deal of social interaction

involves references to history, or is placed in a context of knowledge of prior events.

Online interactions should be able to reflect this as well.

 Finally, more can be done in the area of long-term system effects, especially in

terms of “status” and “ranking” of different users. This is related to the reputation

systems described earlier, except in this case, the system itself would be able to apply

some judgment upon users. Active members of an online community, or particularly

interesting members of the community should have those facts automatically reflected in

their visual appearance.

42

11. Conclusion

Chatscape has shown that behaviors can make a chat room more interesting, yet

more complex at the same time. It has definitely become a good platform for future work

involving behaviors and their application in chat. Out of the set of behaviors that was

implemented for this project, the reputation-based behaviors are the most interesting. A

casual yet comprehensive reputation system in place in a chat environment could make

a chatroom not only more informative for its users, but more enjoyable as well.

Through the work done on Chatscape, Chat Circles, and TeleAction, SMGServer

has become a very important part of Sociable Media’s software toolkit. I believe that it

has achieved all of the goals it set out to achieve, including scalability, reliability, and

performance. The feedback gained from Dana Spiegel, my own experiences, and

feedback from users of the system serve to bolster this position. A forthcoming

document will fully explain the technical procedure of developing chat servers around

SMGServer.

43

12. References

[Viegas 99] Viegas, F. and J. Donath. 1999. “Chat Circles”. In Proceedings of CHI 99

[Vilhjálmsson 98] Vilhjálmsson, H.; Cassell, J. 1998. "BodyChat: Autonomous
Communicative Behaviors in Avatars." Proceedings of ACM Autonomous Agents '98,
Minneapolis, May 9-13, p.269-276.

[Kurlander 96] Kurlander, D., T. Skelly and D. Salesin. 1996. “Comic Chat”. In
Proceedings of ACM SIGGRAPH.

[Rodenstein 00] Rodenstein, R. 2000. “Talking in Circles:
Representing Place and Situation In an Online Social Environment”. M.S. Thesis, MIT
Media Laboratory

[TeleActor 01] Donath, J.;Spiegel, D.;Lee, M.;Dobson, K.;Goldberg, K. 2001. “Tele-
Direction: A New Framework for Collaborative Telepresence”. In Proceedings of CHI
2001.

[Web 01] eBay, http://www.ebay.com; Epinions, http://www.epinions.com

[Maxis 00] 2000. “The Sims”. http://www.thesims.com

[Carroll 91] Carroll, John M. 1991. “Designing Interaction”. Cambridge, MA. MIT Press.

[Oikarinen 93] Oikarinen, J.; Reed, D. 1993. “RFC 1459: Internet Relay Chat Protocol”.
Located at http://www.ietf.org/rfc/rfc1459.txt

[Apple 00] Apple Computer, Inc. 2000. “Darwin Streaming Server – FAQ”. Located at
http://www.publicsource.apple.com/projects/streaming/faq.html

[Giel 00] Giel, B. 2000. “JavaServ”. Located at http://www.kcmultimedia.com/javaserv/

	Table of Contents

