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Several analyses of intraspecific animal communication have suggested that threat displays must convey
reliable information about the abilities of the signaller in order to be evolutionarily stable. In this paper,
a game-theoretic model shows that bluffing by animals of low fighting ability can persist as a profitable
tactic in a stable communication system. It is assumed that use of the threat display depends upon variation
in fighting ability that is not visible to the opponent and that there is a fitness cost, or ‘‘handicap’’, paid
by animals that threaten and subsequently lose. Analysis of the model shows that a handicap is necessary
for stable communication and that the effectiveness of the threat increases with the magnitude of the
handicap. However, the handicap does not ensure fully reliable communication and bluffing always forms
part of the evolutionarily stable strategy (ESS). At the ESS, the very strongest and the very weakest
members of the population threaten, while animals of intermediate strength do not. This is possible
because, although weaker animals are liable to greater handicaps when they signal, they also gain greater
benefits than strong animals using the same display. If all animals that threaten pay the handicap
regardless of the outcome of the fight, then there is no ESS. These results provide a possible explanation
for bluffing by the stomatopod crustacean, Gonodactylus bredini, a species in which animals weakened
by molting successfully repulse stronger opponents by use of threat displays.
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1. Introduction

Considerable controversy remains concerning the role
of deception in intraspecific animal threat communi-
cation. Some authors have argued that threat displays
must be ‘‘honest’’ in order to be evolutionarily stable;
that is, they must convey reliable information about
the abilities or motivations of the signaller (Zahavi,
1977, 1982, 1987; Markl, 1985; Grafen, 1990).
According to the ‘‘handicap principle’’, reliability is
enforced by signal costs, or handicaps. Animals of
higher quality can better afford to pay these handicaps;
therefore, animals of lower quality do not threaten or
threaten with lower intensity (Zahavi, 1977, 1987;
Andersson, 1982; Nur & Hasson, 1984; Grafen, 1990;
Johnstone & Grafen, 1992). Under this hypothesis,
communication systems in which threats do not
impose handicaps are subject to bluffing, which in turn
eliminates the incentive for receivers to respond to the

threat. Therefore, displays with widespread bluffing
are not expected in nature.

An alternative possiblity is that threat communi-
cation systems comprise a mix of reliable and deceptive
signals. Deceptive threats have been documented in
empirical studies (e.g. Steger & Caldwell, 1983; Adams
& Caldwell, 1990) and may be expected as well on
theoretical grounds (Dawkins & Krebs, 1978; Gardner
& Morris, 1989; Dawkins & Guilford, 1991).
Deception is possible because it is costly for receivers
of displays to probe the signaller in ways that would
discriminate bluffs from legitimate threats. Since the
advantages of bluffing and probing are frequency
dependent, deceptive threats may persist and succeed,
as long as they remain at a sufficiently low frequency
(Dawkins & Krebs, 1978; Wiley, 1983; Dawkins &
Guilford, 1991). Indeed, proponents of the handicap
principle have recognized that deception may be
possible, but only if there is a limit to the frequency of
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bluffing so that receivers, on average, benefit by
respecting the threat display (Zahavi, 1987; Grafen,
1990).

In order to show how deceptive communication can
be evolutionarily stable (Maynard Smith, 1982), it is
necessary to explain what limits the frequency
of deceptive threats. In some circumstances, the
frequency of bluffs may be restricted by factors
external to the signalling interaction. For example, in
Batesian mimicry systems, the frequency of unreliable
signals is set by the population densities of the models
and mimics (Wiley, 1983). Similarly, if it is assumed
that there are fixed proportions of two categories of
signaller within a single species, then a stable mix of
reliable and deceptive displays may be reached
(Grafen, 1990; Johnstone & Grafen, 1993). Alterna-
tively, the limited frequency of bluffing may be an
outcome of the signalling interaction itself. Adams &
Caldwell (1990) suggested that variation in costs and
rewards to different animals could select for a mix of
reliable and deceptive displays such that recipients are
favored to respond to threats.Herewe develop amodel
of threat communication in which the presence of a
handicap and variable fighting costs leads to an ESS
characterized by partial bluffing.

Previous models have shown that handicaps can
ensure reliable communication if animals of lower
quality pay higher costs for a given display, or if they
are less able to afford those costs (Andersson, 1982;
Nur & Hasson, 1984; Grafen, 1990). These models
generally assume that the benefits deriving from a
given signal are at least as great for animals of high
quality as for animals of low quality. Thus, the net
benefit for the use of the signal increases with the
quality of the signaller. The result is that animals
in poor condition are not favored to signal in the
same way as animals of high condition, and display
behavior is consequently a reliable indicator of the
signaller’s quality. The assumption of equal benefits
may be appropriate in many signalling contexts, such
as the attraction of mates. However, in the context
of threat communication, it is likely that weak
animals benefit more from the use of a threat display
than do strong animals. This is because strong
animals can win many conflicts without threatening
(i.e. by direct fighting), while weak animals cannot.
Furthermore, weak animals have more to gain by
avoiding direct fights since they are less able to
defend against injury. These points are developed
further below. Since weak animals gain greater
benefits for a given display, as well as paying greater
average costs, the net benefit for a given advertise-
ment may not increase monotonically with the
signaller’s strength. The pattern of display may

therefore not provide fully reliable information about
the signaller’s condition.

This study was motivated by observations on
bluffing by a stomatopod crustacean, Gonodactylus
bredini (Steger & Caldwell, 1983; Caldwell, 1986;
Adams & Caldwell, 1990). G. bredini are marine
crustaceans that fight vigorously for possession of
cavities in coral rubble. In addition to delivering blows
with powerful raptorial appendages, many fighting
animals use the meral spread threat display to deter
opponents and to increase the probability of victory
(Dingle & Caldwell, 1969; Adams & Caldwell, 1990).
Surprisingly, newly molted residents threaten more
often than intermolts, even though their soft condition
renders them completely unable to fight (Steger &
Caldwell, 1983; Adams & Caldwell, 1990). These bluffs
significantly reduce the probability that the opponent
will probe the signaller and discover its vulnerability
(Adams & Caldwell, 1990). A striking feature of threat
communication in G. bredini is that threats are
especially likely by the weakest members of the
population.

In this paper, we develop a game-theoretic model
that examines the relationship between the costs of
threat displays, threat reliability, and the stability
of threat communication. In the following sections,
we first clarify our use of the term ‘‘handicap’’ and
outline our approach for including handicaps in
models of threat communication. In Section 3, we
describe a simple model of threat communication, and
in Section 4 we describe the equilibrium solution of the
game, which is characterized by partial bluffing. The
full proof that this is the only ESS is presented in the
Appendix. Since the principal result of the analysis
may seem counterintuitive, we then discuss in Section
5 why stable bluffing is possible and why the result of
this model differs from that of other models of the
handicap principle. Finally, we discuss the impli-
cations of these results for understanding of threat
communication and the behavior of G. bredini.

2. Handicaps in Threat Communication

In Zahavi’s discussions of communication (1977,
1987), his examples encompass a variety of ways in
which displays may handicap the signaller. For our
purposes, two major categories may be distinguished.
In the first, the handicap is incurred during the
production of the signal. For example, the signal may
be exhausting (e.g. Clutton-Brock & Albon, 1979), its
development may consume large quantities of limited
nutrients (e.g. antlers; Zahavi, 1987; Nur & Hasson,
1984), or its production may be enhanced by
physiological changes that bear other costs (e.g.
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Johnstone & Grafen, 1993). We call these handicaps
‘‘production costs’’. Production costs are paid by
every animal that signals regardless of the effect of the
signal upon the receiver. For example, it is costly to
grow antlers whether or not the antlers deter rivals.
Several models of the handicap principle assume
costs of this kind (e.g. Nur & Hasson, 1984; Grafen,
1990).

A second type of handicap, also proposed by Zahavi
(1977, 1987), arises when threat displays increase the
vulnerability of the signaller. In this case, the handicap
derives not from the energy or materials needed to
produce the display, but from the increased risk of
injury if the threat is not successful in deterring attack
by the opponent. The production costs may
be negligible. For example, threat displays in some
species involve a lateral display which exposes the
animal’s flanks to the opponent. Under Zahavi’s
(1977) interpretation, a signaller adopting this posture
has a greater risk of injury than if it directly faced
its opponent; therefore, only animals that are truly
strong can afford to take such a risk. We call this type
of handicap a ‘‘vulnerability cost’’. In contrast to
production costs, vulnerability costs are paid by the
signalling animal only if the opponent attacks and is
able to take advantage of the signaller’s increased
exposure. This kind of handicap is not paid if the threat
deters the opponent or if the signaller is strong enough
that it is not harmed by the increased vulnerability.
Zahavi (1977, 1987) provides other examples of this
kind and other authors have sometimes assumed that
the handicaps for threat displays are due to increased
vulnerability to injury (e.g. Enquist et al., 1985;
Grafen, 1990). Furthermore, in empirical studies, the
signal costs that are believed to underlie reliable
communication are sometimes quantified by the
probability of attacks towards the signaller, rather
than by estimates of production costs (e.g. Popp, 1987;
Waas, 1991). There is also supporting evidence that
some threat displays produce vulnerability handicaps.
For example, threat displays by fulmars deter attacks
by some opponents, but increase the fighting costs for
the signalling animal if its opponent does not withdraw
(Enquist et al., 1985).

A distinction may also be drawn between threat
displays that are graded, showing continuous variation
in the degree of expression, and those that are discrete
(Dawkins & Krebs, 1978). Several previous models of
the handicap principle relevant to threat communi-
cation consider graded displays (Andersson, 1982; Nur
& Hasson, 1984; Grafen, 1990; Johnstone & Grafen,
1992). An important result of these studies is that
handicaps can lead to the evolution of graded displays
in which the level of advertisement corresponds to the

signaller’s true abilities so that information is reliably
extracted by the receiver.

In nature, many threat displays are discrete (Morris,
1957; Brown, 1975). While the display of
the stomatopod, G. bredini, can be delivered with
various intensities, cavity residents usually display
with full intensity whether they are newly molted or
between molts (E. Adams and R. Caldwell, personal
observations). This stereotyped intensity potentially
reduces the amount of information transmitted to
the receiver. Nonetheless, discrete displays may carry
handicaps, the magnitude of which depend upon the
true quality of the signaller, and can conceivably
convey reliable information to the receiver (see also
Enquist, 1985).

3. A Threat Communication Game

This model concerns discrete threat displays that
carry information about variation in the strength of the
signaller that is not otherwise apparent from visual
inspection. In stomatopods, this variation is due
primarily to molt condition, but similar uncertainty
could be caused by disease, hunger, or fatigue, so long
as these disabilities do not produce obvious external
cues. It is assumed that each animal knows its own
strength, but cannot discern the true strength of an
opponent except by fighting. In an escalated fight, both
animals pay a cost, the true strengths are discovered,
and the stronger animal wins.

We model a contest for an indivisible resource.
The game is deliberately kept simple, encompassing
only a single signal and response (Fig. 1). The first
animal, called the signaller, begins with possession
of the resource. The signaller decides whether to
threaten or to remain with the resource without giving
a threat display. The second animal, called the receiver,
observes the behavior of the first animal, then decides
whether to attack or to flee. Animals base their
decisions in part upon their own strength. If the
receiver attacks, a fight ensues and the stronger animal
wins.

The parameters are defined as follows:

V=the gain in fitness derived from possession of the
resource. This is the difference in fitness between an
animal in control of a resource and an animal thatmust
search elsewhere for other resources (Maynard Smith,
1982). An animal that flees without fighting receives a
payoff of 0.

C=the cost of an escalated fight. This is the cost due
to expenditure of time and energy or to injuries
incurred while determining which animal has the
greater strength. In an escalated contest, both the
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F. 1. Behavioral decisions and associated payoffs.

winner and the loser pay this cost, although its
magnitude may differ for the two animals.

T=the handicap associated with the threat display.

The rules of the game and the assignment of payoffs
are illustrated in Fig. 1. In alternative versions of
the model, the handicap is represented either as a
production cost or as a vulnerability cost; however,
as shown below, only the vulnerability cost leads to an
ESS. The costs associated with these two types
of handicaps must be assigned differently. When the
handicap is a production cost, then T is subtracted
from the signaller’s payoff whenever it threatens (the
first three rows of Fig. 1). However, if the handicap is
due to vulnerability, then subtraction of this cost term
is contingent on the course of events in the subsequent
interaction. The handicap is paid only if the opponent
attacks and exploits the vulnerability of the signaller.
If the receiver does not attack, no handicap is paid by
the threatening animal because the production costs of
the signal are negligible. Furthermore, it is assumed
that the vulnerability handicap is paid only if the
signaller loses. If the opponent attacks and the
increased vulnerability of the signaller allows the
opponent to inflict severe injury, then the handicap is
paid and the signaller is more likely to lose the fight.
However, if the opponent attacks but is not able to
exploit the vulnerability of the signaller, then the
handicap is not paid and the signaller is comparatively
likely to win. For example, an animal that is truly
strong and agile can recover quickly from a lateral
display and fight effectively with its opponent. Thus,
when the handicap is due to an increase in risk of
injury, it is likely that handicaps are borne more
heavily by animals that lose than by animals that win
escalated fights. Other rules for the handicap are

possible and the effects of altering these rules are
discussed below.

In any case, the costs of escalated fights depend upon
the strength of the fighting animals. Each population
of fighting animals has a distribution of strengths. Let
s represent a given animal’s relative strength scaled
between 0 and 1; e.g. if s=0.85, the animal can win
escalated contests against 85% of opponents. A
convenient way to represent variation in fighting costs
is to assume that C is a linear function of s, such that
the strongest animal pays A and the weakest animal
pays a greater cost of A+B. Thus, C=A+B(1−s). If
B=0, then the costs of fighting are the same for all
animals, but with Bq0, weaker animals pay greater
costs. To develop an intuitive description of the game,
we assume first that B=0, which simplifies the
mathematical expressions. However, it is shown in the
appendix that there is an ESS only when Bq0.

4. Bluffing in an Equilibrium Population

Consider first two possible solutions to this game
(Fig. 2). A more complete set of strategies is described
and analyzed in the Appendix. Here we wish to clarify
the meaning of reliability and deception by reference
to the most important possible solutions. In the first
case [Fig. 2(a)], communication is ‘‘honest’’, since only
strong animals threaten (those with sqJ). From the
receiver’s point of view, the threat carries reliable
information about the strength of the signaller in that
animals that threaten are always stronger than animals
that do not threaten. If the signaller threatens, then
receivers with sqL attack; others flee [Fig. 2(c)]. If the
signaller does not threaten, then receivers with sqK
attack [Fig. 2(d)]. Since LqK, threat displays reduce
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F. 2. Two conceivable threat communication systems. (a) No
bluffing. Only signallers with strengths greater than the critical value
J give threat displays. (b) Bluffing. The weakest signallers, those with
strength less than the critical value I, also produce threat displays.
(c) In either case, if the signaller threatens, receivers with strength
greater than L attack. (d) If the signaller does not threaten, receivers
with strength greater than K attack.

at equilibrium, then the payoffs to alternative tactics
should be equal at these threshold values.

At the equilibrium value of I, the expected payoff to
a signaller that threatens is the same as the expected
payoff to a signaller that does not threaten. Assuming
initially that fighting costs do not vary with s, the
average payoff to an animal with s=I that threatens is

L(V)+(1−L)(−C−T).

A proportion, L, of the receivers will flee, in which case
the signaller receives a payoff of V, and the remainder
of receivers (probability=1−L) will attack and win,
with the signaller receiving a payoff of −C−T (see
Fig. 1). Similarly, the average payoff to a signaller with
s=I that does not threaten is

K(V)+(1−K)(−C).

These expressions are nearly identical, but in the
second case the animal does not pay the handicap,
T, when it loses. Putting these together, at the
equilibrium value of I:

L(V)+(1−L)(−C−T)

=K(V)+(1−K)(−C). (1)

Following similar reasoning, the equations for
fitness at J, K, and L, respectively are:

L(V)+(J−L)(V−C)+(1−J)(−C−T)

=KV+(J−K)(V−C)+(1−J)(−C) (2)

0=[(K−I)/(J−I)](V−C)

+[(J−K)/(J−I)](−C) (3)

0=[I/(I+1−J)](V−C)

+[(1−J)/(I+1−J)](−C). (4)

The left halves of eqns (3) and (4) are set to zero, the
payoff for fleeing, since the payoff for fleeing is equal
to the payoff for attack at the threshold values of K and
L. Expressions (1–4) can be solved to give I, J, K and
L, in terms of V, C and T. This yields:

I=C2/[V(V+C+T)] (5)

J=(V2+C2+TV)/[V(V+C+T)] (6)

K=C/V (7)

L=(CV+C2+TV)/[V(V+C+T)]. (8)

The requirement that 1qJqLqKqIq0, as depicted
in Fig. 2, is met provided that V, C and T are positive
and that VqC. The Appendix considers other possible
orderings of I, J, K, and L; however, none produces
an ESS.

the probability of attack by receivers. This can be
considered a reliable threat communication system,
since animals that threaten are all stronger than
animals that do not threaten, although some signallers
drive off opponents against which they could not win
an escalated contest (in the region JQsQL). We show
below that such reliable communication is never an
ESS for this game.

A threat communication system characterized by
partial bluffing is shown in Fig. 2(b). In this case,
threats are given by the weakest signallers (sQI) as
well as by the strongest (sqJ). Since the receivers
cannot determine the true s of the signaller without
escalation, these two categories of signals are equally
effective in driving off opponents. Threat displays
by the weak signallers can be called ‘‘bluffs’’, since
none of these animals could win escalated fights
against the opponents that are deterred by the threat
display (those with KQsQL). Threat displays by the
strongest animals are called ‘‘reliable threats’’, since
any of these animals could win escalated fights against
the opponents that are deterred by the display.
This solution incorporates a remarkable feature of
threat communication in stomatopods—the weakest
animals often threaten; indeed, they do so in
circumstances in which many stronger animals do not
threaten (Adams & Caldwell, 1990). We will show
that there is always an ESS of this form; that is,
bluffing is favored for the weakest members of the
population, yet the threat display does not lose its
effectiveness.

I, J, K and L (Fig. 2) represent threshold values of
s at which animals switch tactics. If the population is
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So long as weaker animals suffer greater costs of
fighting (i.e. Bq0), then there is a unique ESS (see
Appendix). At the ESS, 1qJqLqKqIq0 as
depicted in Fig. 2. Figure 3 illustrates how the values
of the thresholds I, J, K and L depend upon the cost
of escalated fights, varied in this case by increasing
A, which increases fighting costs for all animals.
As fighting costs rise, the fraction of weak animals
bluffing (those with sQI) increases steadily while the
fraction of strong animals threatening (those with
sqJ) increases, then declines. A broader range of
receivers flee as costs rise and the proportion deterred
by the threat, given by L−K, diminishes. Qualitatively
similar results are obtained for other values of V, T and
B.

The effects of variation in the magnitude of the
handicap are shown in Figure 4. As the handicap
becomes more severe, fewer animals deliver either
bluffs or reliable threats, and the range of receivers that
are deterred by the threat, given by L−K, increases.
The highest values of T shown in Fig. 4 are probably
biologically unrealistic, but it is helpful to note that the
ESS persists regardless of the value of T.

Thus far, the model has assumed that the handicap
is paid only by animals that threaten and lose contests
(Fig. 1). If instead it is assumed that animals that
threaten always pay the handicap, regardless of the
outcome of the fight, then it can be shown that
there is no ESS either with or without bluffing (see
Appendix).

F. 4. The effect of varying T, the magnitude of the handicap,
upon the ESS thresholds. (See Fig. 2 for an explanation of the four
thresholds.) In this example, V=1, A=0.4, and B=0.4.

5. Why Bluffing is Favored

Asdescribed above, analysis of themodel shows that
threats are favored for both the strongest and
the weakest members of the population, but not
for animals of intermediate strength. Because this
outcome may seem counterintuitive, we discuss here
how bluffing by the weakest animals is possible in a
stable system of threat communication.

Consider an animal that must decide whether or not
to deliver a threat display. Although the payoff cannot
be predicted with certainty in a particular case, because
the strength of the opponent is unknown, the average
payoff can be calculated for an animal of any given
strength (s). Figure 5(d) shows the relative payoff for
signallers that threaten as a function of s; that is, the
difference between the expected fitness if the animal
threatens and the expected fitness if the animal does not
threaten. The resident should threaten if the net
relative payoff is positive; otherwise, it should refrain
from threatening. Notice that the graph of the net
relative payoff crosses the abscissa twice, dividing the
spectrum of animal strengths into three regions: weak
animals (sEI), which are favored to threaten;
moderate animals (IEsEJ), which should not
threaten; strong animals (seJ), which should
threaten.

To understand this in further detail, various effects
of the threat display can be examined separately.
The costs associated with the threat display are due to
the vulnerability handicap. Since the handicap is paid
only if the signaller threatens and loses, the expected
handicap can be calculated as the product of the

F. 3. The effect of varying A, the component of fighting costs
that does not varywith strength, upon theESS thresholds. (SeeFig. 2
for an explanation of the four thresholds.) In this example, V=1,
B=0.4, and T=0.4.
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probability of losing and T, the magnitude of the
handicap [Fig. 5(a)]. These costs are especially strong
for weak animals, which are more likely to lose
contests. This aspect of our model is in keeping with
Zahavi’s arguments and with some previous models of
handicaps: the average handicap is greater for weaker
animals, thus strong animals may be favored to signal
when weaker animals are not.

However, the benefits associated with threats also
vary with the signaller’s strength. Threats produce two
kinds of benefits. First, by threatening, the resident
may win some fights that it would otherwise lose. This
benefit is enjoyed chiefly by weak animals. The
magnitude of this benefit is the product of V, the value
of the resource, and the increased likelihoodofwinning
due to the threat display. Only receivers with strengths

between K and L are deterred by threats. Since strong
signallers (those with strengths greater than L) would
win all of these contests even if they did not threaten,
they do not increase their probability of victory by
displaying. Animals weaker than K benefit the most
from threats, since they would not otherwise win any
contests with the opponents that flee from threats.
Between K and L, the benefit declines linearly with
resident strength [Fig. 5(b)].

The second benefit of threatening is that it is cheaper
to win a contest by the use of a display than by
escalated fighting. This also benefits weak animals
more than strong animals, since weak animals suffer
greater fighting costs in escalated fights [Fig. 5(c)].
By driving off receivers with strengths between K and
L, threat displays lower fighting costs for a fraction of
encounters. The expected benefit is given by the
product of this fraction, L−K, and the cost of
engaging in an escalated fight, C=A+B(1−s).

When the cost and benefit curves are added together,
it can be seen that threats are favored for strong
animals and for weak animals [Fig. 5(d)]. At the strong
end of the spectrum, the expected handicap changes
faster with resident’s strength than does the expected
benefit; this favors threats by the stronger animals. At
theweak endof the spectrum, the benefits change faster
with strength than the costs. This favors threats by the
weakest animals.

We do not suggest that this double-crossing of
payoff curves will characterize all models of threat
communication. But neither is this result dependent
upon a particular contrived example. The illustration
in Fig. 5 adopts particular values for V, A, B and T,
but a similar result is obtained in this game for any
parameter values over the allowable range. Further-
more, this result persists with some minor changes in
the rules of the game. For example, we have assumed
in this paper that T and V do not vary with strength.
However, if the magnitude of the handicap or the value
of victory is greater for weaker animals, ESS solutions
can still arise with bluffing by weak animals
(unpublished results).

6. Discussion

The principal conclusion resulting from this analysis
is that threat communication may be stable despite
successful bluffing by the weakest members of the
population. Indeed, such bluffing always forms part of
the ESS in this game. Threats are delivered by the
weakest and the strongest members of the population,
but not by animals of intermediate strength. The result
is a mix of reliable and deceptive displays, which are

F. 5. The costs and benefits of threatening, relative to not
threatening, as a function of the signaller’s strength. In this example,
V=1, A=0.5, B=0.5, and T=0.5. (a) The average handicap paid.
(b) The relative benefit due to the increased likelihood of victory.
(c) The relative benefit due to decreased fighting costs. (d) The sum
of all relative costs and benefits.
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both effective in eliciting withdrawals by opponents of
intermediate strength.

When the population plays according to the
evolutionarily stable strategy, some receivers of threat
displays are deceived. Nevertheless, many threats are
reliable and receivers would only lower their fitness by
ignoring threat displays. This is true because a
sufficiently large fraction of threats are given by strong
animals that are able to inflict injury and are likely to
win escalated fights. Responding to threats benefits the
receivers on average, but lowers their fitness in some
specific cases.

This result supports Zahavi’s suggestion that a
handicap is necessary for stable threat communication
(Zahavi, 1977, 1982), but shows that handicaps do not
ensure fully reliable communication in all signalling
systems. Bluffers pay high costs when exposed by
probing and weak signallers are especially likely to pay
the handicap, but this does not weed out all deceptive
threats. Despite the existence of bluffing, the cost of the
threat is related to its effectiveness; that is, to the
proportion of opponents that are deterred by the threat
display, calculated as L−K (Fig. 4). When there is no
handicap (when T is 0), the threat has no effect on the
receiver’s behavior. In support of this prediction,
studies of threat communication in birds show that
threat displays are more effective when they cause a
greater increase in the signaller’s vulnerability to attack
(Enquist et al., 1985; Popp, 1987; Waas, 1991). The
model also shows that bluffs are not necessarily rare or
even less common than legitimate threats. If the costs
of escalated fights are large with respect to the value of
the resource, a small number of legitimate threats can
protect a large number of bluffers from discovery
(Fig. 3).

The outcome of the game theoretic analysis
is sensitive to particular assumptions about the
signalling interaction and the assignment of handicap
costs. The rules adopted are very simple (Fig. 1),
representing only one of several possible ways to
incorporate vulnerability handicaps. Not all of these
will produce stable bluffing; indeed, the plausibility
of complete ‘‘honesty’’ has been shown both for
discrete threat displays (Enquist, 1985) and for
displays that vary in intensity (Grafen, 1990). This
variation in the conclusions of alternative game
theoretical models implies that there will be diversity
in the reliability of natural signalling systems. Honest
signalling cannot be expected universally (see also
Bond, 1989; Gardner & Morris, 1989; Dawkins &
Guilford, 1991; Johnstone & Grafen, 1993).

Nonetheless, the features in our model that favor
bluffing by weak animals are likely to arise in other
models of threat communication, as long as the

animals are assumed to have a spectrum of strengths.
Previous models of the handicap principle have
emphasized that, for the handicap principle to operate,
animals of lower quality must suffer greater average
costs from a given signal (Andersson, 1982; Grafen,
1990), or be less able to afford those costs (Nur &
Hasson, 1984). This requirement is upheld in our
model as well [Fig. 5(a)]. However, in addition
to greater costs, weak animals also realize greater
benefits from threat displays, as argued above. The
changes in signal costs and benefits with animal
strength do not precisely compensate for one another;
instead, when they are added together, the resulting
profile of predicted behaviors may have unexpected
properties, including bluffing by weak animals [e.g.
Fig. 5(d)]. By contrast, when the function of a signal
is to attract mates, rather than to deter competitors,
there is no obvious reason why the average benefits of
a given signal should be greater for animals of lower
quality. As a result, models of communication in other
contexts usually assume that the benefits of a given
level of advertisement are equal or greater for animals
of higher quality (Nur & Hasson, 1984; Grafen, 1990).
The result is a fully reliable display.

Many assumptions of this model are confirmed by
data on threat communication in G. bredini. In
agreement with the model, hidden variation in fighting
ability has strong effects on the probable outcome of
fights (Steger & Caldwell, 1983; Adams & Caldwell,
1990). Animals adjust their fighting tactics according
to changes in their own physical condition (Adams &
Caldwell, 1990). Receivers cannot distinguish bluffs
from legitimate threats, except by risky probing
(Adams & Caldwell, 1990). Moreover, the threat
display ofG. bredinidoes not appear to be a production
handicap. The meral spread threat display is a
presentation of weaponry by an extension of the
raptorial appendages (Dingle&Caldwell, 1969), which
is unlikely to consume significant amounts of energy.
However, adopting this posture reduces surprise and
lowers the speed at which a strike can be delivered (R.
L. Caldwell, personal communication), which may
increase the odds that an opponent can deliver the first
blow. The game-theoretic analysis provides a possible
explanation for succesful threats by newly molted
animals.

In the interests of simplicity, the model makes
numerous restrictive assumptions. For example, it is
assumed that the resource is of equal value to all
animals. In G. bredini, it is more likely that weak
animals suffer greater penalties than strong animals
from loss of the cavity due to their vulnerability to
predators and their inability to supplant intermolt
stomatopods elsewhere on the reef. This variation
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in resource value should increase the likelihood of
bluffing by newly molted animals. The newly molted
resident’s best chance for survival is to drive off its
opponents without allowing probing. Thus, weak
animals may be better able to afford the cost of threats
than strong animals for which the cavity is not as
valuable.

Another recent model (Gardner & Morris, 1989)
also examines discrete signals with specific reference to
bluffing in G. bredini. In Gardner & Morris’ model, a
resident may either flee or defend, but all residents that
defend cavities use the threat display. The use of the
threat is thus completely coincident with the decision
to fight. From the receiver’s point of view, all animals
with which they might fight deliver threats; thus, no
information is provided by the threat and no decision
by the recipient varies with the signallers’ display
behavior. This is better considered to be a model of
fighting decisions, rather than of signalling per se.
Their results show that weak animals are less likely to
fight than strong animals for some parameter values
and that the probability of fighting by small animals
may change cyclically. No such cyclical fluctuations
have been observed in G. bredini, but it is valuable to
note that the dynamics of fighting decisions can be
analyzed even when there is no point equilibrium.
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APPENDIX

Mathematical Model

In this Appendix we develop a formal mathematical
model of the game presented heuristically in the
main body of the paper. More detailed discussion of
the relevant game-theoretic concepts can be found
in Mesterton-Gibbons (1992), whose notation we
adopt.

First we define the strategy set, S, to be the set of all
four-dimensional vectors whose components are
numbers between 0 and 1. We interpret S as follows.
Let the vector u=(u1, u2, u3, u4) denote the strategy of
a representative individual or protagonist, called
Player 1 for convenience, and let the random variable
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T A1
Payoffs to resident protagonist and intruding opponent

Relative magnitudes Protagonist’s Opponent’s
of X and Y payoff payoff

XQu1 or Xqu2 and Yqv4 r(X, Y) s(Y, X)
XQu1 or Xqu2 and YQv4 V 0

u1QXQu2 and Yqv3 s(X, Y) s(Y, X)
u1QXQu2 and YQv3 V 0

X denote Player 1’s fighting strength. We assume that
X is continuously distributed between 0 and 1. Then,
in the role of resident, Player 1 threatens if either XQu1

or Xqu2, but does not threaten if u1QXQu2; because
X is continuously distributed, the event that X=u1 or
X=u2 occurs with zero probability, and so we can
safely ignore it. In the role of intruder, on the other
hand, Player 1 attacks when Xqu4 if its opponent
threatens but when Xqu3 if its opponent does not
threaten; correspondingly, Player 1 fleeswhenXQu4 or
when XQu3 according to whether its opponent
threatens or not (and X=u3 or X=u4 again occurs with
zero probability).

Similarly, let v=(v1, v2, v3, v4) denote the strategy of
Player 1’s opponent, called Player 2 for convenience,
and let the random variable Y denote Player 2’s
fighting strength, which again is continuously
distributed between 0 and 1. The interpretation of v is
analogous to that of u: for example, in the role of
resident, Player 2 threatens if either YQv1 or Yqv2.

Using notation that temporarily suppresses depen-
dence on u and v let F(X, Y) denote the payoff to the
u-strategist (Player 1) against the v-strategist (Player 2),
let Fk (X, Y) denote the payoff to u against v in role k,
and let pk be the probability of occupying role k. Then,
if r stands for resident and i for intruder, we have
pr+pi=1 and

F(X, Y)=prFr(X, Y)+piFi(X, Y). (A.1)

Note that F, Fr and Fi are random variables because X
and Y are random variables. Accordingly, let fighting
strength X or Y be continuously distributed between 0
and 1 with density g, let E denote expected value over

the joint distribution of X and Y, and define
fk (u, v)=E[Fk (X, Y)]. Then for k=r and k=i we have

fk (u, v)=g
1

0 g
1

0

Fk (x, y)g(x)g(y) dx dy (A.2)

and, from (A.1), the reward or expected payoff to
Player 1 against Player 2 is

f(u, v)=E[F(X, Y)]=pr fr (u, v)+pifi (u, v). (A.3)

We interpret f(u, v) as the reward to a u-strategist in a
population of v-strategists.

It is convenient at this juncture to define functions
r and s of X and Y as follows:

r(X, Y)=
V−C

−C−T
if XqY
if XQY

(A.4)

s(X, Y)=
V−C

−C
if XqY
if XQY.

(A.5)

From Fig. 1, r and s are the respective payoffs to a
threatening or non-threatening resident protagonist
against an attacking opponent. Then the payoffs
from any contest to either contestant are defined by
Tables A1 and A2; in each table, the first two rows
correspond to threatening behavior by the resident,
whereas the last two rows correspond to non-
threatening behavior. Note that, by symmetry, the
middle columns of both tables together imply the
final columns. The middle columns of Tables A1 and
A2 define, respectively, Fr and Fi. Thus if u1Eu2

T A2
Payoffs to intruding protagonist and resident opponent

Relative magnitudes Protagonist’s Opponent’s
of X and Y payoff payoff

YQv1 or Yqv2 and Xqu4 s(X, Y) r(Y, X)
YQv1 or Yqv2 and XQu4 0 V

v1QYQv2 and Xqu3 s(X, Y) s(Y, X)
v1QYQv2 and XQu3 0 V
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we have

fr(u, v)=g
u1

0 g
1

v4

r(x, y)g(x)g(y) dx dy

+g
1

u2
g

1

v4

r(x, y)g(x)g(y) dx dy

+g
u1

0 g
v4

0

Vg(x)g(y) dx dy

+g
1

u2
g

v4

0

Vg(x)g(y) dx dy

+g
u2

u1
g

1

v3

s(x, y)g(x)g(y) dx dy

+g
u2

u1
g

v3

0

Vg(x)g(y) dx dy (A.6)

and

fi(u, v)=g
1

u4
g

v1

0

s(x, y)g(x)g(y) dx dy

+g
1

u4
g

1

v2

s(x, y)g(x)g(y) dx dy

+g
1

u3
g

v2

v1

s(x, y)g(x)g(y) dx dy, (A.7)

where in each case the first integral sign corresponds to
integration variable x, and the second to variable y. If
u1qu2, however, then the u-strategist always threatens,
and in place of (A.6) we have

fr(u, v)=g
1

0 g
1

v4

r(x, y)g(x)g(y) dx dy

+g
1

0 g
v4

0

Vg(x)g(y) dx dy=W, (A.8)

say, where W is independent of u. Thus any strategy
satisfying u1qu2 is equivalent mathematically to any
strategy satisfying u1=u2, and so from now on we

restrict the strategy set to

S={u=(u1, u2, u3, u4)=0Eu1

Eu2E1, 0Eu3E1, 0Eu4E1}. (A.9)

It is another question entirely whether the strategies
thus excluded are all equivalent biologically: an animal
that always threatens because its ‘‘high’’ threshold (for
reliable communication) is normal and its ‘‘low’’
threshold (for deceitful communication) abnormally
high may be said to behave very differently from an
animal that always threatens because its low threshold
is normal and its high threshold abnormally low, but
our game does not distinguish between them.
Nevertheless, the question becomes irrelevant because
u1Qu2 at the only ESS.

Now, u* $ S [defined by (A.9)] is an evolutionarily
stable strategy, or ESS, if

f(u*, u*)ef(v, u*) for all v $ S (A.10a)

and

f(u*, u*)qf(v, u*) (A.10b)

or

f(u*, v)qf(v, v) (A.10c)

for all v $ S such that v$u*, where ‘‘$’’ means
‘‘belonging to’’. If only (A.10a) were satisfied, then u*
could not be selected against, but it could be invaded
by random drift. If (A.10b) is satisfied for all v$u*,
then u* is a strong ESS; otherwise u* is a weak ESS.
To obtain an ESS of our game we first calculate the
‘‘rational reaction set’’ R, defined by

R={(u, v)= u $ S, v $ S, f(u, v)=max f(ū, v)},
(A.11)

which contains all feasible strategy combinations (u, v)

such that u is a ū-strategist’s best reply to v in the sense
of maximizing f. From (A.10), u* can be an ESS only
if (u*, u*) $ R. If also u* is uniquely the best reply to
itself—that is, if (u*, u*) $ R but (u, u*)(R for u$u*—
then u* is a strong ESS. If, on the other hand,
(u*, u*) $ Rbut there exist alternative best replies to u*,
then u* is at best a weak ESS (and often, as here, is not
an ESS at all). For a more detailed discussion of the
concept of rational reaction set see, for example,
Mesterton-Gibbons (1992).

To calculate R we must maximize f defined by (A.3)
with respect to u. We first observe from (A.6)–(A.7)
that fr(u, v) is independent of u3 and u4, whereas fi(u, v)
is independent of u1 and u2. Using notation that
suppresses dependence on v, we may write

fi(u, v)=f3(u3)+f4(u4), (A.12)



. .   . -416

where

f3(u3)=g
1

u3
g

v2

v1

s(x, y)g(x)g(y) dx dy (A.13)

and f4 is the sum of the first two integrals in (A.7). Note
that v1Ev2 in the above expression because v $ S
[defined by (A.9)]. Furthermore, defining t=r−s, i.e.

t(X, Y)=
0

−T
if XqY
if XQY

(A.14)

(and again using notation that suppresses dependence
on v), we may write

fr(u, v)=f1(u1)+f2(u2), (A.15)

where

f1(u1)=g
u1

0 g
v4

v3

(V−s(x, y))g(x)g(y) dx dy

+g
u1

0 g
1

v4

t(x, y)g(x)g(y) dx dy (A.16)

and

f2(u2)=g
1

0 g
v3

0

Vg(x)g(y) dx dy

+g
1

u2
g

v4

v3

(V−s(x, y))g(x)g(y) dx dy

+g
1

u2
g

1

v4

t(x, y)g(x)g(y) dx dy

+g
1

0 g
1

v3

s(x, y)g(x)g(y) dx dy

=W−f1(u2), (A.17)

where W is defined by (A.8). Thus maximization
with respect to u3 may be performed separately from
that with respect to u4, and both independently of
that with respect to u1 or u2. This separability of the
reward function makes the game tractable analytically.

Some general features of R now follow directly from
the inequalities Vq0, Cq0 and Tq0. From (A.5) and
(A.13), if u3Qv1Qv2 then f '3 (u3)q0, where the prime
denotes differentiation, and so the maximum of f3 over
0Eu3E1 must occur where v1Eu3E1 for any realistic
probability density function g, i.e. any g such that
g(j)q0 for 0EjE1 (except perhaps at isolated points
where g=0). Again, for any realistic g, (A.5), (A.14)
and (A.16) imply that if v4Ev3 then f'1(u1)Q0 for all

0Eu1E1 unless v4=v3=1. Thus if v4Ev3 then the
maximum of f1 must occur at u1=0; unless v4=v3=1,
in which case f1 is independent of u1. Correspondingly,
(A.17) yields f '2 (u2)q0 for all 0Eu2E1 unless
v4=v3=1, and so the maximum of f2 must occur at
u2=1; unless v4=v3=1, in which case f2 is independent
of u2.

Nevertheless, we cannot completely calculate R
without specifying V, C, T and g in (A.4)–(A.8).
Accordingly, we assume that V and T are constant, but
that C decreases linearly with fighting strength
according to

C=A+B(1−X), (A.18)

with A, B constant and 0QAQV, Bq0. (Of course,
(A.18) is defined from the point of view of the
protagonist: the corresponding cost for its opponent is
C=A+B(1−Y).) Thus VqC for the strongest
animal, andVqC for every animal in the limit asB:0,
but in general there may be (weaker) animals for which
CqV. It is conveient at this juncture to define three
dimensionless parameters, as follows:

a=
A
V

, b=
B
V

, t=
T
V

. (A.19)

Note that 0QaQ1, bq0 and tq0, by assumption;
nevertheless, it will be instructive at a later point
to consider the limits a:0, b:0 and a:1. We also
assume that fighting strength is uniformly distributed
between 0 and 1, i.e.

g(j)=1, 0EjE1. (A.20)

We now proceed with the maximization in (A.11).
From (A.13), (A.18) and (A.20) we readily find that

f3(u3)=1
2V(v2−v1)(1−u3){2(1−a)

−b(1−u3)}−1
2V(v2−u3)2 (A.21)

if v1Eu3Ev2, whereas the last (squared) term in (A.21)
must be omitted to obtain the correct expression for f3

when v2Eu3E1. It is then straightforward to show that
the maximum of f3 on v1Eu3E1 (and hence also on
0Eu3E1) occurs at u3=

u3 if b(1−v2)E1−a (A.22a)

1−(1−a)/b if b(1−v2)q1−a, (A.22b)

where

u3=
v1+(a+b)(v2−v1)

1+b(v2−v1)
. (A.23)
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T A3
Maximum of fi defined by (A.7) on 0Eu3, u4E1

Relative magnitudes Where maximum occurs Conditions on
of v1Ev2 u3 u4 (u3, u4)

dQbv1, b(1−v2)E1−a u3 (A.28a) v1Eu3Ev2, u4Qv1

bv1EdEbv2, b(1−v2)E1−a u3 u4 v1Eu3, u4Ev2

dqbv2, b(1−v2)E1−a u3 (A.28c) v1Eu3Ev2, u4qv2

dQbv1, b(1−v2)q1−a 1−(1−a)/b (A.28a) u3qv2, u4Qv1

bv1EdEbv2, b(1−v2)q1−a 1−(1−a)/b u4 u3qv2, v1Eu4Ev2

dqbv2, b(1−v2)q1−a 1−(1−a)/b (A.28c) u3qv2, u4qv2

v1=0, v2=1 (a+b)/(1+b) u4 u4 arbitrary

Note that v1Eu3Ev2 in (A.22a), whereas v2Qu3E1 in
(A.22b). A similar calculation shows that

f4(u4)=1
2V(1−u4){2v1−(2a+b(1−u4))

×(v1−v2+1)}+1
2V(1−v2)2

−1
2V(v1−u4)2 (A.24)

if 0Eu4Ev1; whereas the last (negative squared) term
must be omitted from (A.24) to obtain the correct
expression for f4 when v1Eu4Ev2, and

f4(u4)=1
2V(1−u4){2v1−2v2+u4

+1−(v1−v2+1)(2a+b(1−u4))} (A.25)

when v2Eu4E1. Then if we define

u4=
(a+b)(v1−v2+1)−v1

b(v1−v2+1)
(A.26)

and

d=
(a+b)(v1−v2+1)−v1

v1−v2+1
, (A.27)

the maximum of f4 on 0Eu4E1 can be shown to occur
where u4=

(a+b)(v1−v2+1)
1+b(v1−v2+1)

if dQbv1 (A.28a)

u4 if bv1EdEbv2 (A.28b)

(a+b)(v1−v2+1)−v1+v2

1+b(v1−v2+1)
if dqbv2, (A.28c)

provided v1−v2+1$0. Note that 0Eu4Qv1 in (A.28a)
and v1Eu4Ev2 in (A.28b), whereas v2Qu4E1 in
(A.28c). If v1−v2=0, which can happen only if v1=0
and v2=1, then f3 is maximized at u3=(a+b)/(1+b)
and any u4 maximizes f4. Taken together with (A.12),
these results imply that the maximum of fi is given by
Table A3.

We have already established that when v3ev4, fr is
maximized for 0Eu1Eu2E1where u1=0, u2=1 (unless
v3=v4=1, in which case both u1 and u2 are arbitrary).
Moreover, it is clear from (A.5) and (A.16)–(A.17) that
fr is maximized where u1=u2 if v3Qv4=1. Let us

therefore assumed that v3Qv4Q1, and hence that

b(1−v4)Qa+b(1−v4)Qa+b(1−v3). (A.29)

From (A.16), (A.18) and (A.20), we readily find that

f1(u1)=1
2Vu1{2(1+a+b)(v4−v3)

−2t(1−v4)−b(v4−v3)u1} (A.30)

if 0Eu1Ev3, and that V(u1−v3)2/2 must be subtracted
from (A.30) to obtain the correct expression for f1 when
v3Eu1Ev4; whereas

f1(u1)=1
2V{(v4−v3)(v4+v3+u1(2(a+b)

−bu1))−2tu1(1−v4)+t(u1−v4)2} (A.31)

if v4Eu1E1. In describing the shape of this func-
tion on 0Eu1E1, which depends on the relative
magnitude of

D=
t(1−v4)
v4−v3

, (A.32)

it is convenient first to define u1, u2 by

u1=
(1+a+b)(v4−v3)−t(1−v4)

b(v4−v3)
(A.33)

u2=1−
a(v4−v3)

t−b(v4−v3)
. (A.34)

Then routine application of the calculus shows that
f1 varies on 0Eu1E1 as follows. If De1+a+b, then
f1 decreases from u1=0 to u1=u2(qv4) and increases
again from u1=u2 to u1=1. If
1+a+bqDe1+a+b(1−v3), then f1 increases from
u1=0 to u1=u1(Ev3), decreases from u1=u1

to u1=u2(qv4), and increases again from u1=u2 to
u1=1. If 1+a+b(1−v3)qDqa+b(1−v4), then f1

increases from u1=0 to u1=v, where

v=
(1+a+b)v4−(a+b)v3−t(1−v4)

1+b(v4−v3)
(A.35)

satisfies v3QvQv4, decreases from u1=v to
u1=u2(qv4), and increases again from u1=u2 to
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u1=1. (Note that Dqa+b(1−v4) and (A.29) imply
tqb(v4−v3)in the denominator of (A.34).) Finally,
ifDEa+b(1−v4) then f1 increasesmonotonically from
u1=0 to u1=1; its concavity is always downward for
0Eu1Ev4 but is upward or downward on v4Eu1E1
according to whether Dqb(1−v4) or DQb(1−v4).

Correspondingly, from (A.17), f2 varies on 0Eu2E1
as follows. If De1+a+b, then f2 increases from u2=0
to u2=u2 (qv4) and decreases again from u2=u2 to
u2=1. If 1+a+bqDe 1+a+b(1−v3), then f2

decreases from u2=0 to u2=u1(Ev3), increases from
u2=u1 to u2=u2(qv4), and decreases again from u2=u2

to u2=1. If 1+a+b(1−v3)qDqa+b(1−v4), then f2

decreases from u2=0 to u2=v (where v is defined by
(A.35) and satisfies v3QvQv4), increases from u2=v to
u2=u2 (qv4), and decreases again from u2=u2 to u2=1.
Finally, if DEa+b(1−v4) then f2 decreases monoton-
ically from u2=0 to u2=1. Taken together with (A.15),
these results imply that the maximum of fr on
0Eu1Eu2E1 is given by Table A4. Note that the
maximizing strategies correspond to unconditional
signalling if DEa+b(1−v4).

Now, if v $ S is an ESS then the maximum
in Table A3 must occur where u3=v3, u4=v4; the
maximum inTableA4must occurwhere u1=v1, u2=v2;
and all conditions on u must be satisfied. Let us first of
all look for a strong ESS. Then v $ S must be the only
best reply to itself. This immediately rules out the
fourth and sixth rows of Table A4, where (u1, u2) is not
unique; and although in the fifth row (0, 1) is a unique
best reply, it corresponds to the bottom row of
Table A3 where u4 is not unique. Accordingly, we
restrict our attention to the first three rows ofTableA4.
Then, for the maximum to occur at u2=v2, each
possibility requires v2qv4. Thus themaximumat u4=v4

in Table A3 must satisfy v4Qv2, excluding the third and
sixth row of that table. Again, from (A.32), the relative
magnitudes of v3 and v4 in the first three rows of
Table A4 all imply v3Qv4Q1, so that the maximum at
u3=v3 in Table A3 cannot satisfy v3ev4, and hence
(because v4Qv2) cannot satisfy v3ev2; thus the fourth

and fifth rows of Table 3 are excluded. The first row
of the table is likewise excluded, because the maximum
where u3=v3 and u4=v4 would have to satisfy
v4Qv1Ev3, which is impossible because v4qv3. Only the
second row of Table A3 now remains. Because the
maximum at u3=v3 must therefore satisfy v1Ev3, we
cannot have v1qv3, which excludes the third row of
Table A4. But the maximum where u1=v1, u2=v2 in
Table A4 cannot now occur where u1=0, u2=u2

because from (A.27) the second row of Table A3 would
then imply 0Ea+bEbu2, which is impossible for
aq0. We have thus excluded the top row of Table A4,
and only the second remains. We conclude that a
strong ESS must correspond to the second row in each
table.

Let us now write v=(I, J, K, L) as in Fig. 2 in the
main text. Then we have shown that a strong ESS must
satisfy the equations I=u1, J=u2, K=u3 and L=u4

where u1, u2 are functions of K, L defined by
(A.33)–(A.34), and u3, u4 are functions of I, J defined
by (A.23) and (A.26). If these equations have a unique
solution, then a unique strong ESS exists. Note that
with C defined by (A.18), the equations I=u1, J=u2,
K=u3 and L=u4 correspond to eqns (1)–(4) of Section
4 in the main text, with X=I, X=J, X=K and X=L,
respectively, in C. The last equation can be rewritten
in the form I/(I+1−J)=a+b(1−L). Thus, because
(as is most easily seen from Fig. 4) 1−L decreases with
T, the proportion of threat displays that are bluffs also
decreases with T as stated in Section 4.

Now K=u3 and L=u4 can be substituted into the
equations I=u1 and J=u2 to yield a pair of equations
for I and J. The first of these two equations has the
form

tab(1−J)2+d1(1−J)+d0=0, (A.36)

where

d0=(1−a){(1+t)(1−bI+b)+a}I (A.37)

T A4
Maximum of fr defined by (A.6) on 0Eu1Eu2E1

Value of (u1, u2)
Relative magnitude where maximum Conditions on

of v3, v4 occurs (u1, u2)

De1+a+b (0, u2) u1Ev3, u2qv4

1+a+bqDe1+a+b(1−v3) (u1, u2) u1Ev3, u2qv4

1+a+b(1−v3)qDqa+b(1−v4) (v, u2) v3Qu1Ev4, u2qv4

DEa+b(1−v4), v4qv3 (u1, u2) u1=u2, u2 arbitrary
v3ev4, v4$1 (0, 1)
v3=v4=1 (u1, u2) arbitrary
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is a quadratic polynomial in I and

d1=−{(a+b+at)(1−bI+b)

+bt(1−a)I+a(a+b)} (A.38)

is linear is I. The second equation is cubic in J, and can
be used in conjunction with (A.36) to express J as the
quotient of cubic and quadratic polynomials in I. Sub-
stituting this expression back into (A.36) yields a sextic
equationforI.Fortunately, threesolutionsof thisequa-
tion, namely, I=0, I=1+a/b and I=1+(1+a)/b can
be found by inspection. None satisfies 0QIQ1. Thus,
removing the appropriate linear factors, we find that
I must satisfy the cubic equation

b2(1+b)(1+t)I3+c2I2+c1I+c0=0, (A.39)

in which the coefficients c0, c1 and c2 are defined by

c0=−a{(a+b)(1+2a+b)+at(1+a+b)}

c1=(1+a+b){(1+t){1+a+(1+b)(1+t)}

+2ab}+a(1+t){1+b+b(3a+2b)}+a2

c2=−b{(1+t){(2+b)t+2b2+(3b+2)

×(1+a)}+a(1+b)}. (A.40)

Because c0Q0 and b2(1+b)(1+t)+c2+c1+
c0q0, (A.39) always has a real solution satisfying
0QIQ1. It is not difficult (but somewhat tedious) to
show that this solution is the only solution satisfying
0QIQ1; the other two solutions of (A.39) are either
complex conjugates or, if they are real, satisfy Iq1.
Moreover, only one solution of the quadratic equation
(A.36), the solution with a negative square root,
satisfies JqI. Thus v=(I, J, K, L) is unique.

The limits of the strong ESS thresholds I, J, K and L
can be found analytically both as a:0 and as a:1. As
a:0 we have

I:0, J:1, K:
b

1+b
, L:

b+t
1+b+t

. (A.41)

As a:1 we have

For all intermediate values of a, the ESS thresholds are
readily found numerically. A sample calculation for
b=0.4=t appears in Fig. 3 in the main text.

The strategy (I, J, K, L) does not, however, remain
evolutionarily stable in the limit as b:0. Then
(I, J, K, L):u*, where u* is the four-dimensional
vector defined by

{1+a+t}u*=(a2, 1+a2+t,

×a+a2+at, a+a2+t). (A.43)

To see this, observe that the second rows of Tables A3
and A4 imply d=0 and D=1+a in the limit as b:0.
Then u4 and u1 in (A.26) and (A.33) are indeterminate
quantities, and v=(I, J, K, L) is instead determined
from the equations D=1+a, J=u2, K=u3 and d=0,
which are linear, and readily yield (A.43).

Now, from (A.3), (A.12), (A.15), (A.17), (A.21),
(A.30) and the appropriate modification of (A.24),
we find on setting b=0 that f(v, u*)=f(u*, u*) for any

v=(v1, u*2 , u*3 , v4) such that 0Ev1Eu*3 ,

u*1 Ev4Eu*2 , (A.44)

and that v then satisfies

f(u*, v)−f(v, v)=−V(1+a+t)v1(v4−u*4 )pr

−V(1−a)(v1−u*1 )(1−v4)pi (A.45)

Because f(u*, u*)=f(v, u*), no such v satisfies (A.10b).
On the other hand, if

u*1 Qv1Eu*3 , u*4 Qv4Eu*2 (A.46)

then the right-hand side of (A.45) is negative. Thus
v$u* exists such that, although (A.10a) is satisfied,
neither (A.10b) nor (A.10c) is satisfied. Therefore,
although u* defined by (A.43) is an equilibrium
strategy (i.e. satisfies (A.10a)) when b=0, it is not
an ESS.

To complete our analysis for bq0, we now establish
that the ESS u*=(I, J, K, L) is unique. We have
already established that (I, J, K, L) is the only strong
ESS, but from Tables A3 and A4 there are several
candidates for a weak ESS. First, from the last row of
Table A3 and the fifth row of Table A4, we find that

u*=(0, 1, (a+b)/(1+b), l) (A.47)

satisfies (A.10a) for any lE(a+b)/(1+b); however,
(A.47) does not satisfy (A.10b), because f(v, u*)=
f(u*, u*) for

v=(0, 1, (a+b)/(1+b), v4), (A.48)

where v4 is any number between 0 and 1. On using
(A.6)–(A.7) and (A.47)–(A.48), we then find that
f(u*, v)−f(v, v)=0, so that (A.10c) does not hold.
Thus u* defined by (A.47) is not a weak ESS.
Intuitively, never threatening cannot be an evolu-
tionarily stable behavior because in equilibrium the
threshold l is irrelevant; even if the population strategy
v satisfies v4E(a+b)/(1+b) to begin with, there is
nothing to prevent v4 from drifting to v4ql, in which

I:
2

1+(1+b)(1+t)+z(1+b2)(1+t)2+2(1+t)(1+bt)+1
, J:1, K:1, L:1. (A.42)
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case never threatening is no longer a best reply. (In
particular, there is nothing to prevent v4 from drifting
to 1, and never threatening cannot be a best reply to an
opponent who never attacks when threatened.)

Second, from the last row of Table A4, we must
investigate the possibility that there is a weak ESS
of the form u*=(v1, v2, 1, 1), where v1 and v2 are
arbitrary. Because aQ1, however, we see from
Table A3 that this possibility requires u3=1, which
from (A.23) implies (1−a)v1+av2=1, and hence
v1=v2=1. But then, from (A.28) and the first
three rows of Table A3, either v4=(a+b)/(1+b) or
v4=1−(1−a)/b, contradicting v4=1. Hence there is
no such ESS.

The remaining possibility for a weak ESS is an
always-threatening equilibrium with v1=v2=m, say,
which corresponds to the fourth row of Table A4,
and therefore satisfies v4qv3. This equilibrium cannot
correspond to the first row of Table A3, because
v1Ev3Ev2, v4Ev1 then implies v4QmEv3, contradicting
v4qv3. For similar reasons, the equilibrium cannot
correspond to either the second row of Table A3
(which would require v4=m=v3) or the fourth or fifth
row (each of which would require v3qv4). Thus the
equilibriummust correspond to either the third or sixth
row of Table A3, and hence have the form

u*=(m, m, z, (a+b)/(1+b)), (A.49)

where

z=max{m, 1−(1−a)/b} (A.50)

satisfies zQ(a+b)/(1+b). Then f(v, u*)=f(u*, u*)
and f(u*, v)−(f(v, v)=0 for any

v=(v̄, v̄, v3, (a+b)/(1+b)). (A.51)

Although u* satisfies (A.10a), it fails to satisfy
(A.10b)–(A.10c), and so u* defined by (A.49) is not
a weak ESS. Intuitively, always threatening cannot
be an evolutionarily stable behavior because in
equilibrium the threshold z is irrelevant; even if the
population strategy v satisfies v3Q(a+b)/(1+b) to
begin with, there is nothing to prevent v3 from drifting
to v3e(a+b)/(1+b), in which case always threatening
is no longer a best reply. (In particular, there is nothing
to prevent v3 from drifting to 1, and always threatening
cannot be a best reply to an opponent who never
attacks when not threatened.) This completes our
proof that (I, J, K, L) is the only ESS.

It is interesting to note, however, from (A.32) and
the fourth row of Table A4, that u* defined by (A.49)
is not even an equilibrium unless

tEa+b
1−a 0a+b

1+b
−z1. (A.52)

Intuitively, if the handicap is sufficiently large, then the
equilibrium defined by (A.49) is selected against;
however, even if the handicap is small enough to satisfy
(A.52), the equilibrium can still be invaded by random
drift.

The ESS does not persist if payoffs are changed so
that a handicap T is paid not only by animals that
threaten and lose, but also by animals that threaten
andwin. There are twopossibilities. First, suppose that
a resident who threatens does not pay the handicap if
the intruder flees. Then f(u, v) is modified because
r=V−C−T if XqY in (A.4), whereas t=−T if
XqY in (A.14). These modifications have no effect on
f3 of f4; but [for g defined by (A.20)] the second integral
in (A.16) becomes −Tu1(1−v4), while the third
integral in (A.17) becomes −T(1−u2)(1−v4). These
changes affect R if v3Qv4Q1. In that case, although
(A.30) is unaltered, −Tu1(1−v4) replaces the two
terms involving t in (A.31), so that the concavity of f1

is always downward for u1ev4 (it no longer depends on
D). Now f1 decreases monotonically from u1=0 to
u1=1 if De1+a+b; f1 increases monotonically from
u1=0 to u1=1 if DEa; and, if aQDQ1+a+b, then f1

increases to a maximum and then decreases again, the
maximum occurring where u1=u1 if
1+a+bqDe1+a+b(1−v3),
where u1=v if 1+a+b(1−v3)qDqa+b(1−v4),
and where u1=1−(D−a)/b if a+b(1−v4)e
Dqa. From (A.17) and the corresponding variation of
f2, we deduce that the maximum of fr on 0Eu1Eu2E1
must occur where u2=1 if Dqa. Setting u=v in
Tables A3 and A4 as before, we find that a strong ESS
must correspond to the first three rows of Table A3.
But v2=1 implies d=a+b−1Qb, which eliminates the
third row; v4qv3 eliminates the first; and v4qv3 also
eliminates the second, because v2=1 implies
(1+b(1−v1))u3=v1+(a+b)(1−v1) and u4=1−
(1−a)/b, so that u3Qu4. There is therefore no strong
ESS; and the proof that there is no weak ESS is
unchanged. Because the condition DEa+b(1−v4) for
an always-threatening equilibrium is replaced by DEa,
however, the coefficient of (a+b)/(1−b)−z in (A.52)
is reduced from (a+b)/(1−a) to a(1+b)/(1−a). Thus
the equilibrium is selected against for smaller
handicaps.

Second, suppose that a threatening resident pays the
handicap regardless of whether the intruder attacks.
Then, in addition to the modifications described in the
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previous paragraph, V is replaced by V−T in the
second row of Table A1, in the third and fourth
integrals of (A.6), and in the second integral of (A.8),
whereas the second integral of (A.16) and the third of
(A.17) become −Tu1 and −T(1−u2), respectively
[for g defined by (A.20)]. Now −Tu1 replaces the two
terms involving t in (A.31), but virtually everything else

in the preceding paragraph still holds, provided only
that we replace T(1−v4) by T in the expressions for
D, u1 and v. The only difference, which does not affect
the existence of an ESS, is that the coefficient of
(a+b)/(1−b)−z in (A.52) is further reduced from

a(1+b)/(1−a) to a; that is, the equilibrium is selected
against for even smaller handicaps.

Finally, we note that the limits of the strong ESS
thresholds I, J, K and L can also be found analytically
both as t:0 and t:a, which has relevance to Fig. 4.
As t:0 we have I:h, J:1−(1−a)h/(a+b),
K:(a+b)/(1+b) and L:(a+b)/(1+b), where h is
defined by

and as t:a we have I:0, J:1, K:(a+b)/(1+b)
and L:1. With regard to Fig. 4, note that K is not a
constant, although its variation with t is negligible (it
decreases slowly to a minimum and thereafter slowly
rises).

h=
2a(a+b)

b(a+b)+(1+a)(1+b)+z(1+a)2(1+b)2+2b(1−a)(1+b)(a+b)+b2(a+b)2
; (A.53)


